Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Geometric curvature bounds in Riemannian manifolds with boundary


Authors: Stephanie B. Alexander, I. David Berg and Richard L. Bishop
Journal: Trans. Amer. Math. Soc. 339 (1993), 703-716
MSC: Primary 53C21; Secondary 53C20
MathSciNet review: 1113693
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An Alexandrov upper bound on curvature for a Riemannian manifold with boundary is proved to be the same as an upper bound on sectional curvature of interior sections and of sections of the boundary which bend away from the interior. As corollaries those same sectional curvatures are related to estimates for convexity and conjugate radii; the Hadamard-Cartan theorem and Yau's isoperimetric inequality for spaces with negative curvature are generalized.


References [Enhancements On Off] (What's this?)

  • [Av1] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov. 38 (1951), 5-23. (Russian) (Much of [Av1] is translated in [Av2].)
  • [Av2] A. D. Alexandrow, Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math. 1 (1957), 33–84 (German). MR 0087119
  • [ABN] A. D. Aleksandrov, V. N. Berestovskiĭ, and I. G. Nikolaev, Generalized Riemannian spaces, Uspekhi Mat. Nauk 41 (1986), no. 3(249), 3–44, 240 (Russian). MR 854238
  • [ABB1] Stephanie B. Alexander, I. David Berg, and Richard L. Bishop, The Riemannian obstacle problem, Illinois J. Math. 31 (1987), no. 1, 167–184. MR 869484
  • [ABB2] -, Cut loci, minimizers and wave fronts in Riemannian manifolds with boundary, Michigan Math. J. 40 (1993) (to appear).
  • [ArBp] Stephanie B. Alexander and Richard L. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces, Enseign. Math. (2) 36 (1990), no. 3-4, 309–320. MR 1096422
  • [Bn] Werner Ballmann, Singular spaces of nonpositive curvature, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 189–201. MR 1086658, 10.1007/978-1-4684-9167-8_10
  • [BpCn] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
  • [BoZr] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419
  • [C-V] S. Cohn-Vossen, Existenz Kurzester Wege, Doklady SSSR 8 (1935), 339-342.
  • [Fr] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [GlMr] Detlef Gromoll and Wolfgang T. Meyer, Examples of complete manifolds with positive Ricci curvature, J. Differential Geom. 21 (1985), no. 2, 195–211. MR 816669
  • [Gv1] M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR 624814
  • [Gv2] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, 10.1007/978-1-4613-9586-7_3
  • [Rk] Ju. G. Rešetnjak, Non-expansive maps in a space of curvature no greater than 𝐾, Sibirsk. Mat. Ž. 9 (1968), 918–927 (Russian). MR 0244922
  • [Si] D. Scollozi, Un risultato di locale unicita per le geodetiche su varieta con bordo, Boll. Un. Mat. Ital. B(6) 5 (1986), 309-327.
  • [Tv] Marc Troyanov, Espaces à courbure négative et groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 47–66 (French). MR 1086651, 10.1007/978-1-4684-9167-8_3
  • [Wr] F.-E. Wolter, Cut loci in bordered and unbordered Riemannian manifolds, Technische Universität Berlin, FB Mathematik, Dissertation 249S, 1985.
  • [Yu] Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487–507. MR 0397619

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C21, 53C20

Retrieve articles in all journals with MSC: 53C21, 53C20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1993-1113693-1
Article copyright: © Copyright 1993 American Mathematical Society