Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Noncommutative Köthe duality


Authors: Peter G. Dodds, Theresa K.-Y. Dodds and Ben de Pagter
Journal: Trans. Amer. Math. Soc. 339 (1993), 717-750
MSC: Primary 46L50; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9947-1993-1113694-3
MathSciNet review: 1113694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using techniques drawn from the classical theory of rearrangement invariant Banach function spaces we develop a duality theory in the sense of Köthe for symmetric Banach spaces of measurable operators affiliated with a semifinite von Neumann algebra equipped with a distinguished trace. A principal result of the paper is the identification of the Köthe dual of a given Banach space of measurable operators in terms of normality.


References [Enhancements On Off] (What's this?)

  • [AAP] C. Akemann, J. Anderson, and G. K. Pedersen, Triangle inequalities in operator algebras, Linear and Multilinear Algebra 11 (1982), 167-178. MR 650729 (84a:46126)
  • [An] T. Ando, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163-1169. MR 0150572 (27:568)
  • [BK] L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), 3-19. MR 1054812 (92g:46078)
  • [Ca] A. P. Calderón, Spaces between $ {L^1}$ and $ {L^\infty }$ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. MR 0203444 (34:3295)
  • [Ci] L. J. Ciach, On the conjugates of some operator spaces. I, Demonstratio Math. 18 (1985), 537-553. MR 819333 (87c:46071)
  • [CS] V. I. Chilin and F. A. Sukochev, Symmetric spaces on semi-finite von Neumann algebras, Dokl. Akad. Nauk SSSR 13 (1990), no. 4, 811-815. (Russian) MR 1080637 (92a:46075)
  • [DDP1] P. G. Dodds, T. K. Dodds, and B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583-597.
  • [DDP2] -, A general Markus inequality, Proc. Centre Math. Anal. Austral. Nat. Univ. 24 (1989), 47-57. MR 1060110 (91i:46072)
  • [DDP3] -, Remarks on non-commutative interpolation, Proc. Centre Math. Anal. Austral. Nat. Univ. 24 (1989), 58-77.
  • [DDP4] -, Weakly compact subsets of symmetric operator spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 169-182. MR 1104612 (93e:46074)
  • [Di] J. Dixmier, Von Neumann algebras, Math. Library, vol. 27, North-Holland, Amsterdam, 1981. MR 641217 (83a:46004)
  • [DL] P. G. Dodds and C. J. Lennard, Normality in trace ideals, J. Operator Theory 16 (1986), 127-145. MR 847335 (87k:47102)
  • [Fa1] T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333. MR 658616 (84m:47012)
  • [Fa2] -, Proof of the conjecture of A. Grothendieck on the Fuglede-Kadison determinant, J. Functional Anal. 50 (1983), 215-218. MR 693229 (84m:46081)
  • [FK] T. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • [Fr] D. H. Fremlin, Stable subspaces of $ {L^1} + {L^\infty }$, Proc. Cambridge Philos. Soc. 64 (1968), 625-643. MR 0225154 (37:749)
  • [Ga] D. J. H. Garling, On ideals of operators in Hilbert space, Proc. London Math. Soc. 17 (1967), 115-138. MR 0208398 (34:8208)
  • [GK] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of non-selfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R.I., 1969.
  • [Gr] A. Grothendieck, Réarrangements de fonctions et inegalités de convexité dans les algèbres de von Neumann munies d'une trace, Seminaire Bourbaki, 1955, 113-01-113-13.
  • [GS] D. Sz. Goldstein and F. A. Sukochev, Conditions (A), (B), (C) and $ \sigma (E,E\prime )$-relative weak compactness of non-commutative symmetric spaces, VINITI, Tashkent, 1990, 26 pp. (Russian)
  • [Hi] F. Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math. Anal. Appl. 127 (1987), 18-48. MR 904208 (88k:46076)
  • [Ka] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, Heidelberg, and Berlin, 1980.
  • [KPS] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monographs, vol. 54, Amer. Math. Soc., Providence, R.I., 1982. MR 649411 (84j:46103)
  • [Le] M. Leinert, On integration with respect to a trace, J. Funct. Anal, (to appear). MR 859732 (88b:46095)
  • [LS1] G. G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, J. Funct. Anal. 2 (1968), 31-51. MR 0257775 (41:2424)
  • [Lu] W. A. J. Luxemburg, Rearrangement invariant Banach function spaces, Queen's Papers in Pure and Appl. Math. 10 (1967), 83-144.
  • [Ne] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR 0355628 (50:8102)
  • [Ov1] V. I. Ovčinnikov, $ s$-numbers of measurable operators, Funktsional. Anal, i Prilozhen. 4 (1970), 78-85. (Russian) MR 0271763 (42:6644)
  • [Ov2] -, Symmetric spaces of measurable operators, Dokl. Akad. Nauk SSSR 191 (1970), 769-771; English transl., Soviet Math. Dokl. 11 (1970), 448-451. MR 0298435 (45:7487)
  • [Ov3] -, Symmetric spaces of measurable operators, Voronež. Gos. Univ. Trudy Naučn.-Issled. Inst. Mat. VGU 3 (1971), 88-107. MR 0324436 (48:2788)
  • [PS] J. Peetre and G. Sparr, Interpolation and non-commutative integration, Ann. Mat. Pura Appl. 104 (1975), 187-207. MR 0473869 (57:13528)
  • [Ru] G. I. Russu, On intermediate symmetrically normed ideals, Funktsional. Anal, i Prilozhen. 3 (1969), 94-95. (Russian) MR 0247492 (40:757)
  • [Ry] J. V. Ryff, Orbits of $ {L^1}$-functions under doubly stochastic transformations, Trans. Amer. Math. Soc. 117 (1965), 92-100. MR 0209866 (35:762)
  • [Se] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457. MR 0054864 (14:991f)
  • [St] W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15-56. MR 0102761 (21:1547)
  • [Su] F. A. Sukochev, Symmetric spaces on finite von Neumann algebras, Thesis, Univ. of Tashkent, 1987.
  • [SZ] S. Stratila and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
  • [Ta] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, New York, Heidelberg, and Berlin, 1979. MR 548728 (81e:46038)
  • [Te] M. Terp, $ {L^p}$-spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
  • [Ye1] F. J. Yeadon, Convergence of measurable operators, Math. Proc. Cambridge Philos. Soc. 74 (1973), 257-268. MR 0326411 (48:4755)
  • [Ye2] -, Non-commutative $ {L^p}$-spaces, Math. Proc. Cambridge Philos. Soc. 77 (1975), 91-102. MR 0353008 (50:5494)
  • [Ye3] -, Ergodic theorems for semifinite von Neumann algebras: II, Math. Proc. Cambridge Philos. Soc. 88 (1980), 135-147. MR 569639 (81h:46086)
  • [Za1] A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967. MR 0222234 (36:5286)
  • [Za2] -, Riesz spaces. II, North-Holland, Amsterdam, 1983. MR 704021 (86b:46001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L50, 46E30

Retrieve articles in all journals with MSC: 46L50, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1113694-3
Keywords: Rearrangement invariant Banach function spaces, measurable operators, Köthe duality, normality
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society