Uniform algebras generated by holomorphic and pluriharmonic functions

Author:
Alexander J. Izzo

Journal:
Trans. Amer. Math. Soc. **339** (1993), 835-847

MSC:
Primary 46J15; Secondary 32E25, 46E15

MathSciNet review:
1139494

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if are pluriharmonic on (the open unit ball in and on , and the matrix is invertible at every point of , then the norm-closed algebra generated by the ball algebra and is equal to . Extensions of this result to more general strictly pseudoconvex domains are also presented.

**[A-S]**Sheldon Axler and Allen Shields,*Algebras generated by analytic and harmonic functions*, Indiana Univ. Math. J.**36**(1987), no. 3, 631–638. MR**905614**, 10.1512/iumj.1987.36.36034**[B]**Andrew Browder,*Cohomology of maximal ideal spaces*, Bull. Amer. Math. Soc.**67**(1961), 515–516. MR**0130580**, 10.1090/S0002-9904-1961-10663-0**[Č]**E. M. Čirka,*Approximation by holomorphic functions on smooth manifolds in 𝐶ⁿ*, Mat. Sb. (N.S.)**78 (120)**(1969), 101–123 (Russian). MR**0239121****[G]**T. W. Gamelin,*Uniform algebras*, 2nd ed., Chelsea, New York, 1984.**[H]**L. Hörmander,*An introduction to complex analysis in several variables*, 2nd ed., North-Holland, 1979.**[I]**A. J. Izzo,*Uniform algebras generated by holomorphic and harmonic functions of one and several complex variables*, Ph.D. Thesis, Univ. of California at Berkeley, 1989.**[R-S]**R. Michael Range and Yum-Tong Siu,*Uniform estimates for the ∂-equation on domains with piecewise smooth strictly pseudoconvex boundaries*, Math. Ann.**206**(1973), 325–354. MR**0338450****[R]**Walter Rudin,*Function theory in the unit ball of 𝐶ⁿ*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR**601594****[S]**Edgar Lee Stout,*The theory of uniform algebras*, Bogden & Quigley, Inc., Tarrytown-on-Hudson, N. Y., 1971. MR**0423083****[Wei1]**Barnet M. Weinstock,*Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain*, J. London Math. Soc. (2)**18**(1978), no. 3, 484–488. MR**518233**, 10.1112/jlms/s2-18.3.484**[Wei2]**Barnet M. Weinstock,*Uniform approximation on the graph of a smooth map in 𝐶ⁿ*, Canad. J. Math.**32**(1980), no. 6, 1390–1396. MR**604694**, 10.4153/CJM-1980-109-4**[Wer]**J. Wermer,*Polynomially convex disks*, Math. Ann.**158**(1965), 6–10. MR**0174968**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46J15,
32E25,
46E15

Retrieve articles in all journals with MSC: 46J15, 32E25, 46E15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1993-1139494-6

Article copyright:
© Copyright 1993
American Mathematical Society