Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimates for operator norms on weighted spaces and reverse Jensen inequalities


Author: Stephen M. Buckley
Journal: Trans. Amer. Math. Soc. 340 (1993), 253-272
MSC: Primary 42B20; Secondary 42B25, 47A30, 47B38, 47G10
DOI: https://doi.org/10.1090/S0002-9947-1993-1124164-0
MathSciNet review: 1124164
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the dependence on the $ {A_p}$ norm of $ w$ of the operator norms of singular integrals, maximal functions, and other operators in $ {L^p}(w)$. We also examine connections between some fairly general reverse Jensen inequalities and the $ {A_p}$ and $ R{H_p}$ weight conditions.


References [Enhancements On Off] (What's this?)

  • [1] A. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Fund. Math. 41 (1945), 103-110. MR 0012325 (7:10e)
  • [2] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. MR 0199631 (33:7774)
  • [3] M. Christ and R. Fefferman, A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 87 (1983), 447-448. MR 684636 (84g:42017)
  • [4] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [5] B. Dahlberg, On the Poisson integral for Lipschitz and $ {C^1}$ domains, Studia Math. 66 (1979), 7-24. MR 562447 (81g:31007)
  • [6] -, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), 1119-1138. MR 859772 (88i:35061)
  • [7] R. Fefferman, A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator, J. Amer. Math. Soc. 2 (1989), 127-135. MR 955604 (90b:35068)
  • [8] R. Fefferman, C. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations (to appear). MR 1114608 (93h:31010)
  • [9] J. García-Cuerva and J. Rubio de Francia, Weighted norm inequalities and related topics, Mathematics Studies, North-Holland, 1985. MR 848136 (87b:00011)
  • [10] F. Gehring, The $ {L^p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • [11] M. de Guzman, Differentiation of integrals in $ {{\mathbf{R}}^n}$, Lecture Notes in Math., vol. 481, Springer-Verlag, 1975.
  • [12] R. Hunt, An estimate of the conjugate function, Studia Math. 44 (1972), 371-377. MR 0338667 (49:3431)
  • [13] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. MR 0312139 (47:701)
  • [14] B. Jawerth, Weighted inequalities for maximal operators, Amer. J. Math. 108 (1986), 361-414. MR 833361 (87f:42048)
  • [15] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [16] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [17] J. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math., vol. 1281, Springer-Verlag, 1989. MR 1011673 (90j:42053)
  • [18] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. 35 (1956), 223-248. MR 0080887 (18:321d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B20, 42B25, 47A30, 47B38, 47G10

Retrieve articles in all journals with MSC: 42B20, 42B25, 47A30, 47B38, 47G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1124164-0
Keywords: Singular integral, maximal function, weights
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society