A Frobenius characterization of rational singularity in -dimensional graded rings

Author:
Richard Fedder

Journal:
Trans. Amer. Math. Soc. **340** (1993), 655-668

MSC:
Primary 13A35; Secondary 13D45, 13N05, 14H20

DOI:
https://doi.org/10.1090/S0002-9947-1993-1116312-3

MathSciNet review:
1116312

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A ring is said to be -rational if, for every prime in , the local ring has the property that every system of parameters ideal is tightly closed (as defined by Hochster-Huneke). It is proved that if is a -dimensional graded ring with an isolated singularity at the irrelevant maximal ideal , then the following are equivalent:

(1) has a rational singularity at .

(2) is -rational.

(3) .

Here (as defined by Goto-Watanabe) denotes the least nonvanishing graded piece of the local cohomology module .

The proof of this result relies heavily on the properties of derivations of , and suggests further questions in that direction; paradigmatically, if one knows that satisfies a certain property for every derivation , what can one conclude about the original ring element ?

**[BE]**David A. Buchsbaum and David Eisenbud,*What makes a complex exact?*, J. Algebra**25**(1973), 259–268. MR**0314819**, https://doi.org/10.1016/0021-8693(73)90044-6**[F1]**Richard Fedder,*𝐹-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), no. 2, 461–480. MR**701505**, https://doi.org/10.1090/S0002-9947-1983-0701505-0**[F2]**Richard Fedder,*𝐹-purity and rational singularity in graded complete intersection rings*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 47–62. MR**879562**, https://doi.org/10.1090/S0002-9947-1987-0879562-4**[FHH]**R. Fedder, R. Hübl, and C. Huneke,*Zeros of differential forms along one-fibered ideals*, preprint.**[Fl]**Hubert Flenner,*Rationale quasihomogene Singularitäten*, Arch. Math. (Basel)**36**(1981), no. 1, 35–44 (German). MR**612234**, https://doi.org/10.1007/BF01223666**[FW]**R. Fedder and K.-i. Watanabe,*A characterization of*-*regularity in terms of*-*purity*, Proceedings of the Program in Commutative Algebra at MSRI (held in June and July 1987), Springer-Verlag, 1989.**[HH1]**Melvin Hochster and Craig Huneke,*Tightly closed ideals*, Bull. Amer. Math. Soc. (N.S.)**18**(1988), no. 1, 45–48. MR**919658**, https://doi.org/10.1090/S0273-0979-1988-15592-9**[HH2]**Melvin Hochster and Craig Huneke,*Tight closure*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 305–324. MR**1015524**, https://doi.org/10.1007/978-1-4612-3660-3_15**[HH3]**-,*Tight closure and strong*-*regularity*, Mém. Soc. Math. France (numero Consacré au colloque en l'honneur de P. Samuel).**[HH4]**-,*Tight closure, invariant theory and the Briancon-Skoda Theorem*. I, preprint.**[HR]**Melvin Hochster and Joel L. Roberts,*The purity of the Frobenius and local cohomology*, Advances in Math.**21**(1976), no. 2, 117–172. MR**0417172**, https://doi.org/10.1016/0001-8708(76)90073-6**[GW]**Shiro Goto and Keiichi Watanabe,*On graded rings. I*, J. Math. Soc. Japan**30**(1978), no. 2, 179–213. MR**494707**, https://doi.org/10.2969/jmsj/03020179**[K]**Ernst Kunz,*Kähler differentials*, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR**864975****[LT]**Joseph Lipman and Bernard Teissier,*Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals*, Michigan Math. J.**28**(1981), no. 1, 97–116. MR**600418****[Matl]**Eben Matlis,*Injective modules over Noetherian rings*, Pacific J. Math.**8**(1958), 511–528. MR**0099360****[Mats]**Hideyuki Matsumura,*Commutative algebra*, W. A. Benjamin, Inc., New York, 1970. MR**0266911****[MeSr]**V. B. Mehta and V. Srinivas,*Normal*-*pure surface singularities*, preprint, Tata Institute, Bombay.**[PS]**C. Peskine and L. Szpiro,*Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck*, Inst. Hautes Études Sci. Publ. Math.**42**(1973), 47–119 (French). MR**0374130****[Se]**J.-P. Serre,*Algèbre locale. Multiplicités*, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, Heidelberg, and New York, 1965.**[W1]**K.-i. Watanabe,*Rational singularities with*-*action*, Lecture Notes in Pure and Appl. Math., 84, Dekker, 1983, pp. 339-351.**[W2]**-,*Study of*-*purity in dimension*, preprint, Tokai Univ., Hiratsuka, 259-12, Japan.**[ZS]**O. Zariski and P. Samuel,*Commutative algebra*, vols. I and II, Van Nostrand, Princeton, N. J., 1958 and 1960.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13A35,
13D45,
13N05,
14H20

Retrieve articles in all journals with MSC: 13A35, 13D45, 13N05, 14H20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1116312-3

Article copyright:
© Copyright 1993
American Mathematical Society