Radially symmetric solutions to a Dirichlet problem involving critical exponents

Authors:
Alfonso Castro and Alexandra Kurepa

Journal:
Trans. Amer. Math. Soc. **343** (1994), 907-926

MSC:
Primary 35B05; Secondary 35J65

MathSciNet review:
1207581

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we answer, for , the question raised in [1] on the number of radially symmetric solutions to the boundary value problem , , , , where is the Laplacean operator and . Indeed, we prove that if , then for any this problem has only finitely many radial solutions. For we show that, for each , the set of radially symmetric solutions is bounded. Moreover, we establish geometric properties of the branches of solutions bifurcating from zero and from infinity.

**[1]**Frederick V. Atkinson, Haïm Brezis, and Lambertus A. Peletier,*Solutions d’équations elliptiques avec exposant de Sobolev critique qui changent de signe*, C. R. Acad. Sci. Paris Sér. I Math.**306**(1988), no. 16, 711–714 (French, with English summary). MR**944417****[2]**Haïm Brézis and Louis Nirenberg,*Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Comm. Pure Appl. Math.**36**(1983), no. 4, 437–477. MR**709644**, 10.1002/cpa.3160360405**[3]**Alfonso Castro and Alexandra Kurepa,*Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball*, Proc. Amer. Math. Soc.**101**(1987), no. 1, 57–64. MR**897070**, 10.1090/S0002-9939-1987-0897070-7**[4]**Alfonso Castro and Alexandra Kurepa,*Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities*, Trans. Amer. Math. Soc.**315**(1989), no. 1, 353–372. MR**933323**, 10.1090/S0002-9947-1989-0933323-8**[5]**G. Cerami,*Elliptic equations with critical growth*, College on Variational Problems in Analysis, Lecture Notes SMR 281/24, Internat. Centre for Theoretical Physics, Trieste, Italy, 1988.**[6]**G. Cerami, S. Solimini, and M. Struwe,*Some existence results for superlinear elliptic boundary value problems involving critical exponents*, J. Funct. Anal.**69**(1986), no. 3, 289–306. MR**867663**, 10.1016/0022-1236(86)90094-7**[7]**Michael G. Crandall and Paul H. Rabinowitz,*Bifurcation from simple eigenvalues*, J. Functional Analysis**8**(1971), 321–340. MR**0288640****[8]**Man Kam Kwong,*Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝}=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, 10.1007/BF00251502**[9]**S. I. Pohozaev,*Eigenfunctions of the equation*, Soviet. Math. Dokl.**6**(1965), 1408-1411.**[10]**Patrizia Pucci and James Serrin,*A general variational identity*, Indiana Univ. Math. J.**35**(1986), no. 3, 681–703. MR**855181**, 10.1512/iumj.1986.35.35036**[11]**Marvin Shinbrot and Robert R. Welland,*The Cauchy-Kowalewskaya theorem*, J. Math. Anal. Appl.**55**(1976), no. 3, 757–772. MR**0492756****[12]**Sergio Solimini,*On the existence of infinitely many radial solutions for some elliptic problems*, Rev. Mat. Apl.**9**(1987), no. 1, 75–86. MR**926233****[13]**Neil S. Trudinger,*Remarks concerning the conformal deformation of Riemannian structures on compact manifolds*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 265–274. MR**0240748**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35B05,
35J65

Retrieve articles in all journals with MSC: 35B05, 35J65

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1994-1207581-0

Keywords:
Critical exponent,
radially symmetric solutions,
Dirichlet problem,
nodal curves,
bifurcation

Article copyright:
© Copyright 1994
American Mathematical Society