Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representable $ K$-theory of smooth crossed products by $ {\bf R}$ and $ {\bf Z}$


Authors: N. Christopher Phillips and Larry B. Schweitzer
Journal: Trans. Amer. Math. Soc. 344 (1994), 173-201
MSC: Primary 46L80; Secondary 19K99, 46H99, 46L87, 46M20
DOI: https://doi.org/10.1090/S0002-9947-1994-1219733-4
MathSciNet review: 1219733
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Thorn isomorphism and the Pimsner-Voiculescu exact sequence both hold for smooth crossed products of Fréchet algebras by $ \mathbb{R}$ and $ \mathbb{Z}$ respectively. We also obtain the same results for $ {L^1}$-crossed products of Banach algebras by $ \mathbb{R}$ and $ \mathbb{Z}$.


References [Enhancements On Off] (What's this?)

  • [1] B. Blackadar, K-theory for operator algebras, Springer-Verlag, New York, 1986. MR 859867 (88g:46082)
  • [2] J. B. Bost, Principe d'Oka, K-théorie et systemes dynamiques non-commutatifs, Invent. Math. 101 (1990), 261-333. MR 1062964 (92j:46126)
  • [3] A. Connes, An analogue of the Thom isomorphism for crossed products of a $ {C^\ast}$-algebra by an action of $ \mathbb{R}$, Adv. in Math. 39 (1981), 31-55. MR 605351 (82j:46084)
  • [4] -, Non-commutative differential geometry, Publ. Math. Inst. Hautes Etudes Sci. 62 (1985), 257-360.
  • [5] J. Conway, A course in functional analysis, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [6] A. M. Davie, Homotopy in Fréchet algebras, Proc. London Math. Soc. 23 (1971), 31-52. MR 0296697 (45:5756)
  • [7] G. A. Elliot, T. Natsume, and R. Nest, Cyclic cohomology for one-parameter smooth crossed products, Acta Math. 160 (1988), 285-305. MR 945014 (89h:46093)
  • [8] G. A. Elliott, T. Natsume, and R. Nest, The Heisenberg group and K-theory, K-Theory 7 (1993), 409-428. MR 1255059 (94m:46109)
  • [9] R. Nest, Cyclic cohomology of crossed products with $ \mathbb{Z}$, J. Funct. Anal. 80 (1988), 235-283. MR 961899 (90c:46088)
  • [10] N. C. Phillips, K-theory for Fréchet algebras, Internat. J. Math. 2 (1991), 77-129.
  • [11] M. Reed and B. Simon, Methods of modern mathematical physics I: Functional Analysis, Academic Press, Toronto and New York, 1980. MR 751959 (85e:46002)
  • [12] L. B. Schweitzer, Dense m-convex Fréchet subalgebras of operator algebra crossed products by Lie groups, Internat. J. Math. 4 (1993), 601-673. MR 1232986 (94g:46058)
  • [13] -, Spectral invariance of dense subalgebras of operator algebras, Internat. J. Math. 4 (1993), 289-317. MR 1217384 (94i:46097)
  • [14] F. Tréves, Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967. MR 0225131 (37:726)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L80, 19K99, 46H99, 46L87, 46M20

Retrieve articles in all journals with MSC: 46L80, 19K99, 46H99, 46L87, 46M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1219733-4
Keywords: m-convex Fréchet algebra, smooth crossed product, representable K-theory, m-tempered action
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society