Sensitivity analysis of solutions to generalized equations
Authors:
A. B. Levy and R. T. Rockafellar
Journal:
Trans. Amer. Math. Soc. 345 (1994), 661671
MSC:
Primary 90C31; Secondary 47N10, 49J52, 49K40
MathSciNet review:
1260203
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Generalized equations are common in the study of optimization through nonsmooth analysis. For instance, variational inequalities can be written as generalized equations involving normal cone mappings, and have been used to represent firstorder optimality conditions associated with optimization problems. Therefore, the stability of the solutions to firstorder optimality conditions can be determined from the differential properties of the solutions of parameterized generalized equations. In finitedimensions, solutions to parameterized variational inequalities are known to exhibit a type of generalized differentiability appropriate for multifunctions. Here it is shown, in a Banach space setting, that solutions to a much broader class of parameterized generalized equations are "differentiable" in a similar sense.
 [1]
S. M. Robinson, Implicit Bdifferentiability in generalized equations, Univ. of WisconsinMadison Math. Res. Center, Technical Summary Rep. 2854, 1985.
 [2]
Alan
J. King and R.
Tyrrell Rockafellar, Sensitivity analysis for nonsmooth generalized
equations, Math. Programming 55 (1992), no. 2,
Ser. A, 193–212. MR 1167597
(93d:90064), http://dx.doi.org/10.1007/BF01581199
 [3]
Stephen
M. Robinson, An implicitfunction theorem for a class of nonsmooth
functions, Math. Oper. Res. 16 (1991), no. 2,
292–309. MR 1106803
(92g:58013), http://dx.doi.org/10.1287/moor.16.2.292
 [4]
A. L. Dontchev and W. W. Hager, On Robinson's implicit function theorem, preprint, 1991.
 [5]
R.
T. Rockafellar, Protodifferentiability of setvalued mappings and
its applications in optimization, Ann. Inst. H. Poincaré Anal.
Non Linéaire 6 (1989), no. suppl.,
449–482. Analyse non linéaire (Perpignan, 1987). MR 1019126
(90k:90140)
 [6]
A. B. Levy, R. Poliquin and L. Thibault, Partical extension of Attouch's theorem with application to protoderivatives of subgradient mappings, preprint, 1993.
 [7]
A. B. Levy, Secondorder variational analysis with applications to sensitivity in optimization, Ph.D. Thesis, University of Washington, 1994.
 [8]
R.
A. Poliquin and R.
T. Rockafellar, Tilt stability of a local minimum, SIAM J.
Optim. 8 (1998), no. 2, 287–299 (electronic).
MR
1618790 (99e:90100), http://dx.doi.org/10.1137/S1052623496309296
 [9]
, Amenable functions in optimization, preprint, 1991.
 [10]
A.
B. Levy, Secondorder epiderivatives of integral functionals,
SetValued Anal. 1 (1993), no. 4, 379–392. MR 1267204
(95e:49025), http://dx.doi.org/10.1007/BF01027827
 [11]
A.
Shapiro, On concepts of directional differentiability, J.
Optim. Theory Appl. 66 (1990), no. 3, 477–487.
MR
1080259 (92e:46092), http://dx.doi.org/10.1007/BF00940933
 [12]
Stephen
M. Robinson, Local structure of feasible sets in nonlinear
programming. III. Stability and sensitivity, Math. Programming Stud.
30 (1987), 45–66. Nonlinear analysis and
optimization (LouvainlaNeuve, 1983). MR 874131
(88j:90198)
 [13]
R.
T. Rockafellar, Nonsmooth analysis and parametric
optimization, Methods of nonconvex analysis (Varenna, 1989) Lecture
Notes in Math., vol. 1446, Springer, Berlin, 1990,
pp. 137–151. MR 1079762
(91i:49016), http://dx.doi.org/10.1007/BFb0084934
 [14]
A.
Haraux, How to differentiate the projection on a convex set in
Hilbert space. Some applications to variational inequalities, J. Math.
Soc. Japan 29 (1977), no. 4, 615–631. MR 0481060
(58 #1207)
 [15]
F.
Mignot, Contrôle dans les inéquations variationelles
elliptiques, J. Functional Analysis 22 (1976),
no. 2, 130–185 (French). MR 0423155
(54 #11136)
 [16]
R.
T. Rockafellar, First and secondorder
epidifferentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), no. 1, 75–108. MR 936806
(90a:90216), http://dx.doi.org/10.1090/S00029947198809368069
 [17]
Anthony
V. Fiacco and Jerzy
Kyparisis, Sensitivity analysis in nonlinear programming under
second order assumptions, Systems and optimization (Enschede, 1984)
Lecture Notes in Control and Inform. Sci., vol. 66, Springer, Berlin,
1985, pp. 74–97. MR 878584
(88e:90097), http://dx.doi.org/10.1007/BFb0043393
 [1]
 S. M. Robinson, Implicit Bdifferentiability in generalized equations, Univ. of WisconsinMadison Math. Res. Center, Technical Summary Rep. 2854, 1985.
 [2]
 A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equations, preprint, 1991. MR 1167597 (93d:90064)
 [3]
 S. M. Robinson, An implicitfunction theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), 292309. MR 1106803 (92g:58013)
 [4]
 A. L. Dontchev and W. W. Hager, On Robinson's implicit function theorem, preprint, 1991.
 [5]
 R. T. Rockafellar, Protodifferentiability of setvalued mappings and its applications in optimization, Analyse Non Linéaire (H. Attouch, J. P. Aubin, F. H. Clarke, and I. Ekeland, eds.), GauthierVillars, Paris, 1989, pp. 449482. MR 1019126 (90k:90140)
 [6]
 A. B. Levy, R. Poliquin and L. Thibault, Partical extension of Attouch's theorem with application to protoderivatives of subgradient mappings, preprint, 1993.
 [7]
 A. B. Levy, Secondorder variational analysis with applications to sensitivity in optimization, Ph.D. Thesis, University of Washington, 1994.
 [8]
 R. A. Poliquin and R. T. Rockafellar, A calculus of epiderivatives applicable to optimization, preprint, 1991. MR 1618790 (99e:90100)
 [9]
 , Amenable functions in optimization, preprint, 1991.
 [10]
 A. B. Levy, Secondorder epiderivatives of integral functionals, SetValued Analysis 1 (1993). MR 1267204 (95e:49025)
 [11]
 A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), 477487. MR 1080259 (92e:46092)
 [12]
 S. M. Robinson, Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity, Math. Programming Stud. 30 (1987), 4566. MR 874131 (88j:90198)
 [13]
 R. T. Rockafellar, Nonsmooth analysis and parametric optimization, Methods of Nonconvex Analysis, no. 1446 (A. Cellina, ed.), SpringerVerlag, 1990, pp. 137151. MR 1079762 (91i:49016)
 [14]
 A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational analysis, J. Math. Soc. Japan 29 (1977), 615631. MR 0481060 (58:1207)
 [15]
 F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal. 22 (1976), 130185. MR 0423155 (54:11136)
 [16]
 R. T. Rockafellar, First and secondorder epidifferentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), 75107. MR 936806 (90a:90216)
 [17]
 J. Kyparisis, Sensitivity analysis in nonlinear programming under second order assumptions, Lecture Notes in Control and Information Science, no. 66 (A. V. Balakrishnan and M. Thoma, eds.), SpringerVerlag, New York, 1985, pp. 7497. MR 878584 (88e:90097)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
90C31,
47N10,
49J52,
49K40
Retrieve articles in all journals
with MSC:
90C31,
47N10,
49J52,
49K40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199412602035
PII:
S 00029947(1994)12602035
Keywords:
Generalized equations,
nonsmooth analysis,
sensitivity analysis,
optimization,
variational analysis,
protoderivatives,
Bouligand derivatives
Article copyright:
© Copyright 1994 American Mathematical Society
