Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Univalent functions and the Pompeiu problem

Authors: Nicola Garofalo and Fausto Segàla
Journal: Trans. Amer. Math. Soc. 346 (1994), 137-146
MSC: Primary 30E15; Secondary 35N05
MathSciNet review: 1250819
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a result on the Pompeiu problem. If the Schwarz function $ \Phi $ of the boundary of a simply-connected domain $ \Omega \subset {\mathbb{R}^2}$ extends meromorphically into a certain portion $ E$ of $ \Omega $ with a pole at some point $ {z_0} \in E$, then $ \Omega $ has the Pompeiu property unless $ \Phi $ is a Möbius transformation, in which case $ \Omega $ is a disk.

References [Enhancements On Off] (What's this?)

  • [B] C. A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 124-144. MR 583635 (82b:35031)
  • [BK] L. Brown and J. P. Kahane, A note on the Pompeiu problem for convex domains, Math. Ann. 259 (1982), 107-110. MR 656655 (83g:42013)
  • [BST] L. Brown, B. M. Schreiber, and A. B. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), 125-154. MR 0352492 (50:4979)
  • [C] L. Chakalov, Sur un problème de D. Pompeiu, Annuaire Univ. Sofia Fac. Phys. Math. 40 (1944), 1-44. MR 0031980 (11:236e)
  • [E1] P. Ebenfelt, Some results on the Pompeiu problem, preprint, 1992. MR 1234737 (95b:30061)
  • [E2] -, Propagation of singularities from singular and infinite points in certain complex-analytic Cauchy problems and an application to the Pompeiu problem, preprint, 1993.
  • [GS1] N. Garofalo and F. Segala, Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem, J. Analyse Math. 56 (1991), 1-28. MR 1243097 (94i:35052)
  • [GS2] -, New results on the Pompeiu problem, Trans. Amer. Math. Soc. 325 (1991), 273-286. MR 994165 (91h:35322)
  • [GS3] -, Another step toward the solution of the Pompeiu in the plane, Comm. Partial Differential Equations (to appear).
  • [L] N. N. Lebedev, Special functions and their applications, Dover, New York, 1972. MR 0350075 (50:2568)
  • [S] G. Schober, Univalent functions--Selected topics, Lecture Notes in Math., vol. 478, Springer-Verlag, Berlin and New York, 1975. MR 0507770 (58:22527)
  • [W] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, 1962. MR 1349110 (96i:33010)
  • [Z] L. Zalcman, A bibliographical survey of the Pompeiu problem, Approximation by Solutions of Partial Differential Equations, Quadrature Formulae and Related Topics, (M. Goldstein and W. Haussman, eds.), Kluwer, 1992. MR 1168719 (93e:26001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30E15, 35N05

Retrieve articles in all journals with MSC: 30E15, 35N05

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society