Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The profile near blowup time for solution of the heat equation with a nonlinear boundary condition


Authors: Bei Hu and Hong-Ming Yin
Journal: Trans. Amer. Math. Soc. 346 (1994), 117-135
MSC: Primary 35B40; Secondary 35B05, 35K60
DOI: https://doi.org/10.1090/S0002-9947-1994-1270664-3
MathSciNet review: 1270664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the blowup profile near the blowup time for the heat equation $ {u_t} = \Delta u$ with the nonlinear boundary condition $ {u_n} = {u^p}$ on $ \partial \Omega \times [0,T)$. Under certain assumptions, the exact rate of the blowup is established. It is also proved that the blowup will not occur in the interior of the domain. The asymptotic behavior near the blowup point is also studied.


References [Enhancements On Off] (What's this?)

  • [1] H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations 72 (1988), 201-269. MR 932367 (89e:35066)
  • [2] J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer-Verlag, New York, 1989. MR 1012946 (91d:35165)
  • [3] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Solev growth, Comm. Pure Appl. Math. 42 (1989), 271-297. MR 982351 (90c:35075)
  • [4] L. A. Caffarelli and A. Friedman, Blowup of solutions of nonlinear heat equations, J. Math. Anal. Appl. 12 (1988), 409-419. MR 924300 (89c:35077)
  • [5] J. M. Chadam and H. M. Yin, A diffusion equation with localized chemical reactions, Proc. Edinburgh Math. Soc. 37 (1993), 101-118. MR 1258034 (94m:35156)
  • [6] M. Chipot, M. Fila, and P. Quittner, Stationary solutions, blowup and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions, Acta Math. Univ. Comenian. 60 (1991), 35-103. MR 1120596 (92h:35110)
  • [7] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598. MR 615628 (83f:35045)
  • [8] -, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 8 (1981), 883-901. MR 619749 (82h:35033)
  • [9] M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comment. Math. Univ. Carolinae 30 (1989), 479-484. MR 1031865 (91b:35017)
  • [10] M. Fila and P. Quittner, The blowup rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 14 (1991), 197-205. MR 1099325 (92a:35023)
  • [11] A. Friedman and B. McLeod, Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-477. MR 783924 (86j:35089)
  • [12] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964. MR 0181836 (31:6062)
  • [13] Y. Giga and R. V. Kohn, Asymptotic self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. MR 784476 (86k:35065)
  • [14] -, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 425-447. MR 876989 (88c:35021)
  • [15] -, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884. MR 1003437 (90k:35034)
  • [16] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983. MR 737190 (86c:35035)
  • [17] O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl. (2) 23 (1968).
  • [18] H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations 16 (1974), 319-334. MR 0470481 (57:10235)
  • [19] H. A. Levine and R. A. Smith, A potential well theory for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 9 (1987), 127-136. MR 897262 (89f:35114)
  • [20] W. Liu, The blowup rate of solutions of semilinear heat equations, J. Differential Equations 77 (1989), 104-122. MR 980545 (90e:35022)
  • [21] -, Blowup behavior for semilinear heat equations: multi-dimensional case, IMA preprint series no. 711, 1990.
  • [22] P. Quittner, On global existence and stationary solutions for two classes of semilinear parabolic problems, Centre de recherche de mathematiques de la decision, Universite Paris IX, preprint 9208, 1992. MR 1240209 (94g:35127)
  • [23] A. A. Samarskii, On new methods of studying the asymptotic properties of parabolic equations, Proc. Steklov Inst. Math. 158 (1983), 165-176.
  • [24] W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal. 6 (1975), 85-90. MR 0364868 (51:1122)
  • [25] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40. MR 599472 (82g:35059)
  • [26] -, An $ {L^\infty }$blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38 (1985), 291-295. MR 784475 (86k:35064)
  • [27] H. M. Yin, Blowup versus global solvability for a class of nonlinear parabolic equations, Nonlinear Anal. TMA (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B40, 35B05, 35K60

Retrieve articles in all journals with MSC: 35B40, 35B05, 35K60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1270664-3
Keywords: Blowup rate, asymptotic behavior, elliptic estimates, parabolic estimates
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society