Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conical limit points and groups of divergence type


Author: Sungbok Hong
Journal: Trans. Amer. Math. Soc. 346 (1994), 341-357
MSC: Primary 22E40; Secondary 20H10
DOI: https://doi.org/10.1090/S0002-9947-1994-1273535-1
MathSciNet review: 1273535
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the Patterson-Sullivan measure to generalize Agard's theorem to all groups of divergence type. As a consequence, we prove that for a nonelementary group $ \Gamma $ of divergence type, the conical limit set has positive Patterson-Sullivan measure.


References [Enhancements On Off] (What's this?)

  • [A] S. Agard, A geometric proof of Mostow's rigidity theorem for groups of divergence type, Acta Math 151 (1983), 231-252. MR 723011 (86b:22017)
  • [B] A.F. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983. MR 698777 (85d:22026)
  • [B-M] A.F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sides fundamental polyhedra, Acta Math 132 (1974), 1-12. MR 0333164 (48:11489)
  • [N] P.J. Nicholls, The ergodic theory of discrete groups, London Math. Soc Lecture Note Ser., vol. 143, Cambridge Univ. Press, London and New York, 1989. MR 1041575 (91i:58104)
  • [S] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Etudes Sci. Publ. Math. 50 (1979), 171-202. MR 556586 (81b:58031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E40, 20H10

Retrieve articles in all journals with MSC: 22E40, 20H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1273535-1
Keywords: Nonelementary group, group of divergence type Patterson-Sullivan measure, conical limit point
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society