Porous sets and null sets for elliptic harmonic measures

Author:
Jang-Mei Wu

Journal:
Trans. Amer. Math. Soc. **346** (1994), 455-473

MSC:
Primary 31B35; Secondary 35J99

DOI:
https://doi.org/10.1090/S0002-9947-1994-1260206-0

MathSciNet review:
1260206

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a genuinely -dimensional construction of uniformly elliptic operators in (of divergence form, and of nondivergence form), which have positive -harmonic measures on a class of porous sets on with zero surface measure. The porosity condition given is sharp. The earlier methods were all two dimensional.

**[1]**T. Barceló,*A completely singular harmonic measure for a nondivergence form elliptic operator with a drift*, Comm. Partial Differential Equations**14**(1989), 931-958. MR**1003019 (90e:31003)****[2]**-,*On the harmonic measure for nondivergence elliptic equations*, Comm. Partial Differential Equations**16**(1991), 1367-1422. MR**1132789 (93a:35037)****[3]**P. Bauman,*Positive solutions of elliptic equations in nondivergence form and their adjoints*, Ark. Mat.**22**(1984), 153-173. MR**765409 (86m:35008)****[4]**A. Beurling and L. Ahlfors,*The boundary correspondence under quasiconformal mappings*, Acta Math.**96**(1956), 125-142. MR**0086869 (19:258c)****[5]**L. Carleson,*The extension problem for quasiconformal mappings*, Contributions to Analysis, Academic Press, New York, 1974, pp. 39-47. MR**0377046 (51:13220)****[6]**L. Caffarelli, E. Fabes, and C. Kenig,*Completely singular elliptic-harmonic measures*, Indiana Univ. Math. J.**30**(1981), 917-924. MR**632860 (83a:35033)****[7]**L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa,*Boundary behavior of nonnegative solutions of elliptic operators in divergence form*, Indiana Univ. Math. J.**30**(1981), 621-640. MR**620271 (83c:35040)****[8]**E. Fabes, N. Garofalo, S. Marin-Malave, and S. Salsa,*Potential theory and Fatou theorems for some nonlinear elliptic equations*, Rev. Mat. Iberoamericana**4**(1988), 227-252. MR**1028741 (91e:35092)****[9]**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Springer-Verlag, Berlin, 1983. MR**737190 (86c:35035)****[10]**W. Littman, G. Stampacchia, and H. F. Weinberger,*Regular points for elliptic equations with discontinuous coefficients*, Ann. Scuola Norm. Sup. Pisa**17**(1963), 43-77. MR**0161019 (28:4228)****[11]**L. Modica and S. Mortola,*Construction of a singular elliptic-harmonic measure*, Manuscripta Math.**33**(1980), 81-98. MR**596380 (81m:31001)****[12]**L. Modica, S. Mortola, and S. Salsa,*A nonvariational second order elliptic operator with singular elliptic measure*, Proc. Amer. Math. Soc.**84**(1982), 225-230. MR**637173 (84f:35038)****[13]**P. Tukia and J. Väisälä,*Quasiconformal extension from dimension**to*, Ann. of Math. (2)**115**(1982), 331-348. MR**647809 (84i:30030)****[14]**J.-M. Wu,*Examples of capacity for some elliptic operators*, Trans. Amer. Math. Soc.**333**(1992), 379-395. MR**1062196 (92k:35072)****[15]**-,*Null sets for doubling and dyadic doubling measures*, Ann. Acad. Sci. Fenn.**18**(1993), 77-91. MR**1207896 (94g:28005)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
31B35,
35J99

Retrieve articles in all journals with MSC: 31B35, 35J99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1260206-0

Article copyright:
© Copyright 1994
American Mathematical Society