Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



BMO on strongly pseudoconvex domains: Hankel operators, duality and $ \overline\partial$-estimates

Authors: Huiping Li and Daniel H. Luecking
Journal: Trans. Amer. Math. Soc. 346 (1994), 661-691
MSC: Primary 47B35; Secondary 32A37, 32F20, 32H10, 46E15
MathSciNet review: 1273537
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the condition that characterizes the symbols of bounded Hankel operators on the Bergman space of a strongly pseudoconvex domain and show that it is equivalent to $ BMO$ plus analytic. (Here we mean the Bergman metric $ BMO$ of Berger, Coburn and Zhu.) In the course of the proof we obtain new $ \overline \partial $-estimates that may be of independent interest. Some applications include a decomposition of $ BMO$ similar to the classical $ {L^\infty } + \widetilde{{L^\infty }}$, and two characterizations of the dual of $ VMO$ (which is also a predual of $ BMO$).

In addition, we obtain some partial results on the boundedness of Hankel operators in $ {L^1}$ norm.

References [Enhancements On Off] (What's this?)

  • [Ax1] S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory. Vol. 1 (J. B. Conway and B. B. Morell, eds.), Pitman Research Notes in Math., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1-50. MR 958569 (90b:47048)
  • [Ax2] -, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-322. MR 850538 (87m:47064)
  • [BL] F. Beatrous and S.-Y. Li, On the boundedness and compactness of operators of Hankel type, J. Funct. Anal. 111 (1993), 350-379. MR 1203458 (94b:47033)
  • [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn, and Kehe Zhu, $ BMO$ in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. MR 1073289 (91j:32034)
  • [BCZ] C. A. Berger, L. A. Coburn, and Kehe Zhu, $ BMO$ in the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136. MR 888889 (88m:32061)
  • [BA] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas and weight factors, Ann. Inst. Fourier (Grenoble) 12 (1982), fasc. 3, 91-110. MR 688022 (84j:32003)
  • [Bo] F. Bonsall, Decompositions of functions as sums of elementary functions, Quart. J. Math. Oxford Ser. (2) 37 (1986), 129-136. MR 841422 (87h:46090)
  • [C] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1989), 917-941. MR 1029682 (91h:46041)
  • [DH] Sh. A. Dautov and G. M. Henkin, Zeros of holomorphic functions of finite order and weighted estimates for solutions of the $ \overline \partial $-equation, Mat. Sbornik 107 (1978), 163-174; English transl. in Math. USSR-Sb. 35 (1979), 449-459. MR 512005 (80b:32005)
  • [Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. MR 0350069 (50:2562)
  • [F] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. MR 0422683 (54:10669)
  • [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42. MR 523600 (80h:46052)
  • [G] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $ {\mathbb{C}^n}$, Trans. Amer. Math. Soc. 207 (1975), 219-240. MR 0372252 (51:8468)
  • [KM] S. G. Krantz and Daowei Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-165. MR 942099 (89h:32003)
  • [Li] Huiping Li, $ BMO,\,VMO$ and Hankel operators on the Bergman space of strongly pseudoconvex domains, J. Funct. Anal. 106 (1992), 375-408. MR 1165861 (93d:47055)
  • [Li2] -, Hankel operators on the Bergman space of strongly pseudoconvex domains, Integral Equations Operator Theory (to appear).
  • [Li3] -, Schatten class Hankel operators on strongly pseudoconvex domains, Proc. Amer. Math. Soc. 119 (1993), 1211-1221. MR 1169879 (94a:47045)
  • [Lu1] D. H. Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660. MR 687635 (84e:32025)
  • [Lu2] -, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85-111. MR 778090 (86g:30002)
  • [Lu3] -, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, J. Funct. Anal. 110 (1992), 247-271. MR 1194989 (93j:47039)
  • [R] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York, 1986. MR 847923 (87i:32001)
  • [V] N. Th. Varopoulos, $ BMO$ functions and the $ \overline \partial $-equation, Pacific J. Math. 71 (1977), 221-273. MR 0508035 (58:22639a)
  • [Z] Kehe Zhu, Multipliers of $ BMO$ in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50. MR 1025882 (90m:42024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B35, 32A37, 32F20, 32H10, 46E15

Retrieve articles in all journals with MSC: 47B35, 32A37, 32F20, 32H10, 46E15

Additional Information

Keywords: Hankel operator, $ BMO$, strongly pseudoconvex domain
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society