Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Analytic Fourier-Feynman transforms and convolution


Authors: Timothy Huffman, Chull Park and David Skoug
Journal: Trans. Amer. Math. Soc. 347 (1995), 661-673
MSC: Primary 28C20
DOI: https://doi.org/10.1090/S0002-9947-1995-1242088-7
MathSciNet review: 1242088
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop an $ {L_p}$ Fourier-Feynman theory for a class of functionals on Wiener space of the form $ F(x) = f(\int_0^T {{\alpha _1}dx, \ldots ,\int_0^T {{\alpha _n}dx)} } $. We then define a convolution product for functionals on Wiener space and show that the Fourier-Feynman transform of the convolution product is a product of Fourier-Feynman transforms.


References [Enhancements On Off] (What's this?)

  • [1] M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis, University of Minnesota, 1972.
  • [2] R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552. MR 0236347 (38:4643)
  • [3] -, An $ {L_2}$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30. MR 0404571 (53:8371)
  • [4] K. S. Chang, Scale-invariant measurability in Yeh-Wiener Space, J. Korean Math. Soc. 19 (1982), 61-67. MR 737634 (85k:28020)
  • [5] G. W. Johnson and D. K. Skoug, The Cameron-Storvick function space integral: an $ L({L_p},{L_{{p'}}})$ theory, Nagoya Math. J. 60 (1976), 93-137. MR 0407228 (53:11011)
  • [6] -, An $ {L_p}$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127. MR 514964 (81a:46050)
  • [7] -, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176. MR 555044 (81b:28016)
  • [8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., vol. 32, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [9] J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. MR 0184038 (32:1514)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C20

Retrieve articles in all journals with MSC: 28C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1242088-7
Keywords: Wiener measure, Fourier-Feynman transform, convolution
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society