Epi-derivatives of integral functionals with applications

Authors:
Philip D. Loewen and Harry H. Zheng

Journal:
Trans. Amer. Math. Soc. **347** (1995), 443-459

MSC:
Primary 49J52; Secondary 49K15, 58C20

MathSciNet review:
1282892

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study first- and second-order epi-differentiability for integral functionals defined on , and apply the results to obtain first- and second-order necessary conditions for optimality in free endpoint control problems.

**[1]**H. Attouch,*Variational convergence for functions and operators*, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**773850****[2]**Jean-Pierre Aubin and Hélène Frankowska,*Set-valued analysis*, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR**1048347****[3]**Frank H. Clarke,*Optimization and nonsmooth analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR**709590****[4]**Roberto Cominetti,*On pseudo-differentiability*, Trans. Amer. Math. Soc.**324**(1991), no. 2, 843–865. MR**992605**, 10.1090/S0002-9947-1991-0992605-3**[5]**Chi Ngoc Do,*Generalized second-order derivatives of convex functions in reflexive Banach spaces*, Trans. Amer. Math. Soc.**334**(1992), no. 1, 281–301. MR**1088019**, 10.1090/S0002-9947-1992-1088019-1**[6]**A. B. Levy,*Second-order epi-derivatives of integral functionals*, Set-Valued Anal.**1**(1993), no. 4, 379–392. MR**1267204**, 10.1007/BF01027827**[7]**P. D. Loewen and H. Zheng,*Generalized conjugate points for optimal control problems*, Nonlinear Anal.**22**(1994), no. 6, 771–791. MR**1270169**, 10.1016/0362-546X(94)90226-7**[8]**Dominikus Noll,*Graphical methods in first- and second-order differentiability theory of integral functionals*, Set-Valued Anal.**2**(1994), no. 1-2, 241–258. Set convergence in nonlinear analysis and optimization. MR**1285832**, 10.1007/BF01027104**[9]**R. A. Poliquin and R. T. Rockafellar,*A calculus of epi-derivatives applicable to optimization*, Canad. J. Math.**45**(1993), no. 4, 879–896. MR**1227665**, 10.4153/CJM-1993-050-7**[10]**-,*Amenable functions in optimization*, preprint.**[11]**R. Tyrrell Rockafellar,*Integral functionals, normal integrands and measurable selections*, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975) Springer, Berlin, 1976, pp. 157–207. Lecture Notes in Math., Vol. 543. MR**0512209****[12]**R. T. Rockafellar,*First- and second-order epi-differentiability in nonlinear programming*, Trans. Amer. Math. Soc.**307**(1988), no. 1, 75–108. MR**936806**, 10.1090/S0002-9947-1988-0936806-9**[13]**R. Tyrrell Rockafellar,*Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives*, Math. Oper. Res.**14**(1989), no. 3, 462–484. MR**1008425**, 10.1287/moor.14.3.462**[14]**R. T. Rockafellar,*Proto-differentiability of set-valued mappings and its applications in optimization*, Ann. Inst. H. Poincaré Anal. Non Linéaire**6**(1989), no. suppl., 449–482. Analyse non linéaire (Perpignan, 1987). MR**1019126****[15]**R. T. Rockafellar,*Generalized second derivatives of convex functions and saddle functions*, Trans. Amer. Math. Soc.**322**(1990), no. 1, 51–77. MR**1031242**, 10.1090/S0002-9947-1990-1031242-0**[16]**R. T. Rockafellar,*Nonsmooth analysis and parametric optimization*, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 137–151. MR**1079762**, 10.1007/BFb0084934

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
49J52,
49K15,
58C20

Retrieve articles in all journals with MSC: 49J52, 49K15, 58C20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1995-1282892-2

Keywords:
Integral functionals,
epiderivative,
epiconvergence

Article copyright:
© Copyright 1995
American Mathematical Society