On the general notion of fully nonlinear second-order elliptic equations

Author:
N. V. Krylov

Journal:
Trans. Amer. Math. Soc. **347** (1995), 857-895

MSC:
Primary 35J60; Secondary 35J65

DOI:
https://doi.org/10.1090/S0002-9947-1995-1284912-8

MathSciNet review:
1284912

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The general notion of fully nonlinear second-order elliptic equation is given. Its relation to so-called Bellman equations is investigated. A general existence theorem for the equations like is obtained as an example of an application of the general notion of fully nonlinear elliptic equations.

**[1]**M. F. Atiyah, R. Bott, and L. G[ill]rding,*Lacunas for hyperbolic differential operators with constant coefficients*, I, Acta Math.**124**(1970), 109-189. MR**0470499 (57:10252a)****[2]**I. Ia. Bakelman,*Geometricheskie metody reshenia ellipticheskikh uravnenni*, "Nauka", Moscow, 1965. (Russian) MR**0194727 (33:2933)****[3]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second order elliptic equations*, I.*Monge-Ampère equations*, Comm. Pure Appl. Math.**37**(1984), 369-402. MR**739925 (87f:35096)****[4]**L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second order elliptic equations*, II.*Complex Monge-Ampère, and uniformly elliptic, equations*, Comm. Pure Appl. Math.**38**(1985), 209-252. MR**780073 (87f:35097)****[5]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second order elliptic equations*, III.*Functions of the eigenvalues of the Hessian*, Acta Math.**155**(1985), 261-301. MR**806416 (87f:35098)****[6]**R. Courant,*Methods of mathematical physics*, Vol. 2, Interscience, New York, 1966.**[7]**M. G. Crandall, H. Ishii, and P. L. Lions,*User's guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), 1-67. MR**1118699 (92j:35050)****[8]**L. G[ill]rding,*An inequality for hyperbolic polynomials*, J. Math. Mech.**8**(1959), 957-965. MR**0113978 (22:4809)****[9]**D. Gilbarg and N.S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Springer Verlag, Berlin, 1983. MR**737190 (86c:35035)****[10]**G. H. Hardy, J. E. Littlewood, and G. Polya,*Inequalities*, 2nd ed., Cambridge University Press, Cambridge, 1952. MR**0046395 (13:727e)****[11]**L. Hörmander,*The analysis of linear partial differential operators*, Vols. 1, 2, Springer, New York, 1990.**[12]**-,*An introduction to complex analysis in several variables*, 3rd ed., North-Holland, Amsterdam, 1990. MR**1045639 (91a:32001)****[13]**N.M. Ivochkina,*A description of the stability cones generated by differential operators of Monge-Ampère type*, Mat. Sb.**122**(1983), 265-275; English transl. Math. USSR-Sb.**50**(1985), 259-268. MR**717679 (85g:35043)****[14]**-,*Solution of the Dirichlet problem for curvature equation of order*, Mat. Sb.**180**(1989), 867-887; English transl. Math. USSR-Sb.**67**(1990), 317-339. MR**1014618 (91a:35065)****[15]**N.V. Krylov,*Controlled diffusion process*, "Nauka", Moscow, 1977; English transl. by Springer, New York, 1980. MR**601776 (82a:60062)****[16]**-,*On control of a diffusion process up to the time of first exit from a region*, Izv. Akad. Nauk Armyan. SSR, Ser. Math. (1981), 1029-1048; English transl. Math. USSR-Izv.**19**(1982), 297-313.**[17]**-,*Nonlinear elliptic and parabolic equations of second order*, "Nauka", Moscow, 1985; English transl. by Reidel, Dordrecht, 1987.**[18]**-,*On the first boundary value problem for nonlinear degenerate elliptic equations*, Izv. Akad. Nauk Armyan. SSR, Ser. Math.,**51**(1987), 242-269; English transl. Math. USSR-Izv.**30**(1988), 217-244. MR**896996 (88h:35040)****[19]**-,*Unconditional solvability of the Bellman equation with constant coefficients in convex domains*, Mat. Sb.**135**(1988), 297-311; English transl. Math. USSR-Sb.**63**(1989), 289-303. MR**937642 (89h:35093)****[20]**-,*Smoothness of the payoff function for a controllable process in a domain*, Izv. Akad. Nauk Armyan. SSR Ser. Mat.**53**(1989), 66-96; English transl. Math. USSR-Izv.**34**(1990), 65-95. MR**992979 (90f:93040)****[21]**M. Marcus and H. Minc,*A survey of matrix theory and matrix inequalities*, Allyn and Bacon, Boston, 1964. MR**0162808 (29:112)****[22]**W. Nuij,*A note on hyperbolic polynomials*, Math. Scand.**23**(1968), 69-72. MR**0250128 (40:3368)****[23]**M.V. Safonov,*On the classical solution of nonlinear elliptic equations of second order*, Izv. Akad. Nauk Armyan. SSR. Math.**52**(1988), 1272-1287; English transl. Math. USSR-Izv.**33**(1989), 597-612. MR**984219 (90d:35104)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J60,
35J65

Retrieve articles in all journals with MSC: 35J60, 35J65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1284912-8

Article copyright:
© Copyright 1995
American Mathematical Society