Infinitesimal bending and twisting in onedimensional dynamics
Author:
Frederick P. Gardiner
Journal:
Trans. Amer. Math. Soc. 347 (1995), 915937
MSC:
Primary 30C65; Secondary 30F30, 30F60, 32G15, 47B99
MathSciNet review:
1290717
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An infinitesimal theory for bending and earthquaking in onedimensional dynamics is developed. It is shown that any tangent vector to Teichmüller space is the initial data for a bending and for an earthquaking ordinary differential equation. The discussion involves an analysis of infinitesimal bendings and earthquakes, the Hilbert transform, natural bounded linear operators from a Banach space of measures on the Möbius strip to tangent vectors to Teichmüller space, and the construction of a nonlinear right inverse for these operators. The inverse is constructed by establishing an infinitesimal version of Thurston's earthquake theorem.
 [1]
Lars
V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math.
86 (1964), 413–429. MR 0167618
(29 #4890)
 [2]
Lars
Ahlfors and Lipman
Bers, Riemann’s mapping theorem for variable metrics,
Ann. of Math. (2) 72 (1960), 385–404. MR 0115006
(22 #5813)
 [3]
Lipman
Bers, A nonstandard integral equation with applications to
quasiconformal mappings, Acta Math. 116 (1966),
113–134. MR 0192046
(33 #273)
 [4]
Frederick
P. Gardiner, Teichmüller theory and quadratic
differentials, Pure and Applied Mathematics (New York), John Wiley
& Sons, Inc., New York, 1987. A WileyInterscience Publication. MR 903027
(88m:32044)
 [5]
Frederick
P. Gardiner, A correspondence between laminations and quadratic
differentials, Complex Variables Theory Appl. 6
(1986), no. 24, 363–375. MR 871741
(88e:30111)
 [6]
Frederick
P. Gardiner and Dennis
P. Sullivan, Symmetric structures on a closed curve, Amer. J.
Math. 114 (1992), no. 4, 683–736. MR 1175689
(95h:30020), http://dx.doi.org/10.2307/2374795
 [7]
Frederick
P. Gardiner and Dennis
Sullivan, Lacunary series as quadratic differentials in conformal
dynamics, The mathematical legacy of Wilhelm Magnus: groups, geometry
and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169,
Amer. Math. Soc., Providence, RI, 1994, pp. 307–330. MR 1292907
(95g:58189), http://dx.doi.org/10.1090/conm/169/01662
 [8]
John
B. Garnett, Bounded analytic functions, Pure and Applied
Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1981. MR 628971
(83g:30037)
 [9]
Oliver A. Goodman, Metrized laminations and quasisymmetric maps, Ph.D. thesis, Warwick University, 1989.
 [10]
Paul Green, Vector fields and Thurston's theory of earthquakes, Ph.D. thesis, Warwick University, 1987.
 [11]
Steven
P. Kerckhoff, The Nielsen realization problem, Ann. of Math.
(2) 117 (1983), no. 2, 235–265. MR 690845
(85e:32029), http://dx.doi.org/10.2307/2007076
 [12]
Irwin
Kra, Automorphic forms and Kleinian groups, W. A. Benjamin,
Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. MR 0357775
(50 #10242)
 [13]
Subhashis
Nag and Alberto
Verjovsky, 𝐷𝑖𝑓𝑓(𝑆¹)
and the Teichmüller spaces, Comm. Math. Phys.
130 (1990), no. 1, 123–138. MR 1055689
(91g:58037)
 [14]
Edgar
Reich and Kurt
Strebel, Extremal quasiconformal mappings with given boundary
values, Contributions to analysis (a collection of papers dedicated to
Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
(50 #13511)
 [15]
H.
M. Reimann, Ordinary differential equations and quasiconformal
mappings, Invent. Math. 33 (1976), no. 3,
247–270. MR 0409804
(53 #13556)
 [16]
Dennis
Sullivan, Bounds, quadratic differentials, and renormalization
conjectures, American Mathematical Society centennial publications,
Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992,
pp. 417–466. MR 1184622
(93k:58194)
 [17]
Dennis
Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution
of the FatouJulia problem on wandering domains, Ann. of Math. (2)
122 (1985), no. 3, 401–418. MR 819553
(87i:58103), http://dx.doi.org/10.2307/1971308
 [18]
William
P. Thurston, Earthquakes in twodimensional hyperbolic
geometry, Lowdimensional topology and Kleinian groups
(Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser.,
vol. 112, Cambridge Univ. Press, Cambridge, 1986,
pp. 91–112. MR 903860
(88m:57015)
 [19]
Scott
Wolpert, The FenchelNielsen deformation, Ann. of Math. (2)
115 (1982), no. 3, 501–528. MR 657237
(83g:32024), http://dx.doi.org/10.2307/2007011
 [20]
A.
Zygmund, Smooth functions, Duke Math. J. 12
(1945), 47–76. MR 0012691
(7,60b)
 [1]
 L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413429. MR 0167618 (29:4890)
 [2]
 L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385404. MR 0115006 (22:5813)
 [3]
 L. Bers, A nonstandard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113134. MR 0192046 (33:273)
 [4]
 F. P. Gardiner, Teichmüller theory and quadratic differentials, WileyInterscience, 1987. MR 903027 (88m:32044)
 [5]
 , A correspondence between laminations and quadratic differentials, Complex Analysis Theory Appl. 6 (1986), 363375. MR 871741 (88e:30111)
 [6]
 F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683736. MR 1175689 (95h:30020)
 [7]
 , Lacunary series as quadratic differentials in conformal dynamics, Contemporary Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 307330. MR 1292907 (95g:58189)
 [8]
 John B. Garnett, Bounded analytic functions, Academic Press, 1981. MR 628971 (83g:30037)
 [9]
 Oliver A. Goodman, Metrized laminations and quasisymmetric maps, Ph.D. thesis, Warwick University, 1989.
 [10]
 Paul Green, Vector fields and Thurston's theory of earthquakes, Ph.D. thesis, Warwick University, 1987.
 [11]
 S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235265. MR 690845 (85e:32029)
 [12]
 I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, Mass., 1972. MR 0357775 (50:10242)
 [13]
 S. Nag and A. Verjovsky, and the Teichmueller spaces, Comm. Math. Phys. 130 (1990), 123138. MR 1055689 (91g:58037)
 [14]
 E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis (L. Ahlfors, I. Kra, B. Maskit, and L. Nirenberg, eds.), Academic Press, New York, 1974, pp. 375392. MR 0361065 (50:13511)
 [15]
 M. Riemann, Ordinary differential equations and quasiconformal mappings, Invent. Math. 33 (1976), 247270. MR 0409804 (53:13556)
 [16]
 D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, Mathematics into the Twentyfirst Century. II, Amer. Math. Soc., Providence, RI, 1992. MR 1184622 (93k:58194)
 [17]
 , Quasiconformal homeomorphisms and dynamics. I, Solution of the FatouJulia problem on wandering domains, Ann. of Math. (2) 122 (1985), 401418. MR 819553 (87i:58103)
 [18]
 W. P. Thurston, Earthquakes in twodimensional hyperbolic geometry, Low Dimensional Topology and Kleinian Groups, London Math. Soc. Lecture Note Series, vol. 112, 1984, pp. 91112. MR 903860 (88m:57015)
 [19]
 Scott Wolpert, The FenchelNielsen deformation, Ann. of Math. (2) 115 (1982), 501528. MR 657237 (83g:32024)
 [20]
 A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 4776. MR 0012691 (7:60b)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30C65,
30F30,
30F60,
32G15,
47B99
Retrieve articles in all journals
with MSC:
30C65,
30F30,
30F60,
32G15,
47B99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199512907174
PII:
S 00029947(1995)12907174
Article copyright:
© Copyright 1995
American Mathematical Society
