Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infinitesimal bending and twisting in one-dimensional dynamics


Author: Frederick P. Gardiner
Journal: Trans. Amer. Math. Soc. 347 (1995), 915-937
MSC: Primary 30C65; Secondary 30F30, 30F60, 32G15, 47B99
DOI: https://doi.org/10.1090/S0002-9947-1995-1290717-4
MathSciNet review: 1290717
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An infinitesimal theory for bending and earthquaking in one-dimensional dynamics is developed. It is shown that any tangent vector to Teichmüller space is the initial data for a bending and for an earthquaking ordinary differential equation. The discussion involves an analysis of infinitesimal bendings and earthquakes, the Hilbert transform, natural bounded linear operators from a Banach space of measures on the Möbius strip to tangent vectors to Teichmüller space, and the construction of a nonlinear right inverse for these operators. The inverse is constructed by establishing an infinitesimal version of Thurston's earthquake theorem.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-429. MR 0167618 (29:4890)
  • [2] L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404. MR 0115006 (22:5813)
  • [3] L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113-134. MR 0192046 (33:273)
  • [4] F. P. Gardiner, Teichmüller theory and quadratic differentials, Wiley-Interscience, 1987. MR 903027 (88m:32044)
  • [5] -, A correspondence between laminations and quadratic differentials, Complex Analysis Theory Appl. 6 (1986), 363-375. MR 871741 (88e:30111)
  • [6] F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683-736. MR 1175689 (95h:30020)
  • [7] -, Lacunary series as quadratic differentials in conformal dynamics, Contemporary Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 307-330. MR 1292907 (95g:58189)
  • [8] John B. Garnett, Bounded analytic functions, Academic Press, 1981. MR 628971 (83g:30037)
  • [9] Oliver A. Goodman, Metrized laminations and quasisymmetric maps, Ph.D. thesis, Warwick University, 1989.
  • [10] Paul Green, Vector fields and Thurston's theory of earthquakes, Ph.D. thesis, Warwick University, 1987.
  • [11] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235-265. MR 690845 (85e:32029)
  • [12] I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, Mass., 1972. MR 0357775 (50:10242)
  • [13] S. Nag and A. Verjovsky, $ \operatorname{Diff} ({S^1})$ and the Teichmueller spaces, Comm. Math. Phys. 130 (1990), 123-138. MR 1055689 (91g:58037)
  • [14] E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis (L. Ahlfors, I. Kra, B. Maskit, and L. Nirenberg, eds.), Academic Press, New York, 1974, pp. 375-392. MR 0361065 (50:13511)
  • [15] M. Riemann, Ordinary differential equations and quasiconformal mappings, Invent. Math. 33 (1976), 247-270. MR 0409804 (53:13556)
  • [16] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, Mathematics into the Twenty-first Century. II, Amer. Math. Soc., Providence, RI, 1992. MR 1184622 (93k:58194)
  • [17] -, Quasiconformal homeomorphisms and dynamics. I, Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), 401-418. MR 819553 (87i:58103)
  • [18] W. P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low Dimensional Topology and Kleinian Groups, London Math. Soc. Lecture Note Series, vol. 112, 1984, pp. 91-112. MR 903860 (88m:57015)
  • [19] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), 501-528. MR 657237 (83g:32024)
  • [20] A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76. MR 0012691 (7:60b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C65, 30F30, 30F60, 32G15, 47B99

Retrieve articles in all journals with MSC: 30C65, 30F30, 30F60, 32G15, 47B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290717-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society