The exposed points of the set of invariant means

Author:
Tianxuan Miao

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1401-1408

MSC:
Primary 43A07

DOI:
https://doi.org/10.1090/S0002-9947-1995-1260174-2

MathSciNet review:
1260174

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a -compact infinite locally compact group, and let be the set of left invariant means on . We prove in this paper that if is amenable as a discrete group, then has no exposed points. We also give another proof of the Granirer theorem that the set of -invariant means on has no exposed points, where is an amenable countable group acting ergodically as measure-preserving transformations on a nonatomic probability space .

**[1]**C. Chou,*On a geometric property of the set of invariant means on a group*, Proc. Amer. Math. Soc.**30**(1971), 296-302.**[2]**-,*Ergodic group actions with nonunique invariant means*, Proc. Amer. Math. Soc.**100**(1987), 647-650.**[3]**A. del Junco and J. Rosenblatt,*Counterexamples in ergodic theory and number theory*, Math. Ann.**245**(1979), 185-197.**[4]**E.E. Granirer,*Exposed points of convex sets and weak sequential convergence*, Mem. Amer. Math. Soc., vol. 123, Amer. Math. Soc., Providence, RI, 1972.**[5]**-,*Geometric and topological properties of certain**compact convex sets which arise from the study of invariant means*, Canad. J. Math.**37**(1985), 107-121.**[6]**-,*Geometric and topological properties of certain**compact convex subsets of double duals of Banach spaces, which arise from the study of invariant means*, Illinois J. Math.**30**(1986), 148-174.**[7]**-,*Criteria for compactness and for discreteness of locally compact amenable groups*, Proc. Amer. Math. Soc.**40**(1973), 615-624.**[8]**-,*On finite equivalent invariant measures for semigroups of transformations*, Duke Math. J.**38**(1971), 395-408.**[9]**F.P. Greenleaf,*Invariant means on topological groups*, Van Nostrand, New York, 1969.**[10]**A.L.T. Paterson,*Amenability*, Amer. Math. Soc., Providence, RI, 1988.**[11]**J.P. Pier,*Amenable locally compact groups*, Wiley, New York, 1984.**[12]**J.M. Rosenblatt,*Invariant means and invariant ideals in**for a locally compact group*, J. Funct. Anal.**21**(1976), 31-51.**[13]**-,*Uniqueness of invariant means for measure preserving transformations*, Trans. Amer. Math. Soc.**265**(1981), 623-636.**[14]**M. Talagrand,*Géométrie des simplexes de moyennes invariantes*, J. Funct. Anal.**34**(1979), 304-337.**[15]**Z. Yang,*Exposed points of left invariant means*, Pacific J. Math.**125**(1986), 487-494.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
43A07

Retrieve articles in all journals with MSC: 43A07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1260174-2

Keywords:
Locally compact groups,
amenable groups,
invariant means,
the exposed points

Article copyright:
© Copyright 1995
American Mathematical Society