Hopf constructions and higher projective planes for iterated loop spaces

Authors:
Nicholas J. Kuhn, Michael Slack and Frank Williams

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1201-1238

MSC:
Primary 55P35; Secondary 55P45, 55P47, 55S12

MathSciNet review:
1282890

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define a category, (for each and ), of spaces with strong homotopy commutativity properties. These spaces have just enough structure to define the Dyer-Lashof operations for -fold loop spaces. The category is very convenient for applications since its objects and morphisms are defined in a homotopy invariant way. We then define a functor, , from to the homotopy category of spaces and show to be left adjoint to the -fold loop space functor. We then show how one can exploit this adjointness in cohomological calculations to yield new results about iterated loop spaces.

**[Ad]**J. F. Adams,*On the nonexistence of elements of Hopf invariant one*, Ann. of Math. (2)**72**(1960), 20-104.**[AK]**S. Araki and T. Kudo,*Topology of*-*spaces and*-*squaring operations*, Mem. Fac. Sci. Kyushu Univ. Ser. A**10**(1956), 85-120.**[AS]**M. Arkowitz and P. Silberbush,*Some properties of Hopf-type constructions*, preprint.**[BV]**J. M. Boardman and R. Vogt,*Homotopy everything*-*spaces*, Bull. Amer. Math. Soc.**74**(1968), 1117-1122.**[Br]**W. Browder,*Homology operations and loop spaces*, Illinois J. Math.**4**(1960), 347-357.**[BT]**W. Browder and E. Thomas,*On the projective plane of an*-*space*, Illinois J. Math.**7**(1963), 492-502.**[CLM]**F. R. Cohen, T. J. Lada, and J. P. May,*The homology of iterated loop spaces*, Lecture Notes in Math., vol. 533, Springer, Berlin and New York, 1976.**[CMT]**F. R. Cohen, J. P. May, and L. R. Taylor,*Splitting of certain spaces*, Math. Proc. Cambridge Philos. Soc.**84**(1978), 465-496.**[DL]**E. Dyer and R. Lashof,*Homology of iterated loop spaces*, Amer. J. Math.**84**(1962), 35-88.**[He]**Y. Hemmi,*The projective plane of an*-*pairing*, J. Pure Appl. Algebra**75**(1991), 277-296.**[Hu]**J. R. Hubbuck,*On homotopy commutative*-*spaces*, Topology**8**(1969), 119-126.**[Ka]**R. Kane,*Implications in Morava*-*theory*, Mem. Amer. Math. Soc.**340**(1986).**[Ku1]**N. Kuhn,*The geometry of the James-Hopf maps*, Pacific J. Math.**102**(1982), 397-412.**[Ku2]**-,*Extended powers of spectra and a generalized Kahn-Priddy theorem*, Topology**23**(1985), 473-480.**[Li]**J. P. Lin,*Two torsion and the loop space conjecture*, Ann. of Math. (2)**115**(1982), 35-91.**[Mh]**M. Mahowald,*The metastable homotopy of*, Mem. Amer. Math. Soc.**72**(1967).**[Ma]**J. P. May,*The geometry of iterated loop spaces*, Lecture Notes in Math., vol. 271, Springer, Berlin and New York, 1972.**[Mg1]**R. J. Milgram,*Iterated loop spaces*, Ann. of Math. (2)**84**(1966), 386-403.**[Mg2]**-,*Unstable homotopy from the stable point of view*, Lecture Notes in Math., vol. 368, Springer, Berlin and New York, 1974.**[Mi]**H. R. Miller,*A spectral sequence for the homology of an infinite delooping*, Pacific J. Math.**79**(1978), 139-155.**[Ni]**G. Nishida,*Cohomology operations in iterated loop spaces*, Proc. Japan Acad.**44**(1968), 104-109.**[S11]**M. Slack,*Maps between iterated loop spaces*, J. Pure Appl. Algebra**73**(1991), 181-201.**[S12]**-,*Infinite loop spaces with trivial Dyer-Lashof operations*, Math. Proc. Cambridge Philos. Soc. (1993).**[Sf]**J. Stasheff, -*spaces from the homotopy point of view*, Lectures Notes in Math., vol. 161, Springer, Berlin and New York, 1970.**[St]**N. Steenrod,*A convenient category of topological spaces*, Michigan Math. J.**14**(1967), 133-152.**[Th1]**E. Thomas,*On functional cup operations and the transgression operator*, Arch. Math. (Basel)**12**(1961), 435-444.**[Th2]**-,*Steenrod squares and*-*spaces*. I, II, Ann. of Math. (2)**77**(1963), 306-317;**81**(1965), 473-495.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55P35,
55P45,
55P47,
55S12

Retrieve articles in all journals with MSC: 55P35, 55P45, 55P47, 55S12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1282890-9

Article copyright:
© Copyright 1995
American Mathematical Society