Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Norm estimates for radially symmetric solutions of semilinear elliptic equations


Author: Ryuji Kajikiya
Journal: Trans. Amer. Math. Soc. 347 (1995), 1163-1199
MSC: Primary 35J60; Secondary 34B15, 35B05, 35B45
DOI: https://doi.org/10.1090/S0002-9947-1995-1290720-4
MathSciNet review: 1290720
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The semilinear elliptic equation $ \Delta u + f(u) = 0$ in $ {R^n}$ with the condition $ {\lim _{\vert x\vert \to \infty }}u(x) = 0$ is studied, where $ n \geqslant 2$ and $ f(u)$ has a superlinear and subcritical growth at $ u = \pm \infty $. For example, the functions $ f(u) = \vert u{\vert^{p - 1}}u - u\;(1 < p < \infty \;{\text{if}}\;n = 2,\;1 < p < (n + 2)/(n - 2)\;{\text{if}}\;n \geqslant 3)$ and $ f(u) = u\log \vert u\vert$ are treated. The $ {L^2}$ and $ {H^1}$ norm estimates $ {C_1}{(k + 1)^{n/2}} \leqslant \vert\vert u\vert{\vert _{{L^2}}} \leqslant \vert\vert u\vert{\vert _{{H^1}}} \leqslant {C_2}{(k + 1)^{n/2}}$ are established for any radially symmetric solution $ u$ which has exactly $ k \geqslant 0$ zeros in the interval $ 0 \leqslant \vert x\vert < \infty $. Here $ {C_1},\;{C_2} > 0$ are independent of $ u$ and $ k$.


References [Enhancements On Off] (What's this?)

  • [1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 347-375. MR 695536 (84h:35054b)
  • [2] M. Grillakis, Existence of nodal solutions of semilinear equations in $ {{\mathbf{R}}^n}$, J. Differential Equations 85 (1990), 367-400. MR 1054554 (91k:35080)
  • [3] P. Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, 1982. MR 658490 (83e:34002)
  • [4] C. Jones and T. Küpper, On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal. 17 (1986), 803-835. MR 846391 (87h:35261)
  • [5] R. Kajikiya, Sobolev norms of radially symmetric oscillatory solutions for superlinear elliptic equations, Hiroshima Math. J. 20 (1990), 259-276. MR 1063363 (91k:35092)
  • [6] -, Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates, Hiroshima Math. J. 21 (1991), 111-161. MR 1091434 (92a:35061)
  • [7] -, Nodal solutions of superlinear elliptic equations in symmetric domains, Advances in Math. Sci. Appl. 3 (1994), 219-266. MR 1287930 (95j:35082)
  • [8] K. McLeod, W. C. Troy and F. B. Weissler, Radial solutions of $ \Delta u + f(u) = 0$ with prescribed numbers of zeros, J. Differential Equations 83 (1990), 368-378. MR 1033193 (90m:35021)
  • [9] S. I. Pohozaev, Eigenfunctions of the equation $ \Delta u + \lambda f(u) = 0$, Soviet Math. Dokl. 5 (1965), 1408-1411.
  • [10] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. MR 0454365 (56:12616)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 34B15, 35B05, 35B45

Retrieve articles in all journals with MSC: 35J60, 34B15, 35B05, 35B45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290720-4
Keywords: Semilinear elliptic equation, radially symmetric solution, norm estimate
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society