Norm estimates for radially symmetric solutions of semilinear elliptic equations

Author:
Ryuji Kajikiya

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1163-1199

MSC:
Primary 35J60; Secondary 34B15, 35B05, 35B45

DOI:
https://doi.org/10.1090/S0002-9947-1995-1290720-4

MathSciNet review:
1290720

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The semilinear elliptic equation in with the condition is studied, where and has a superlinear and subcritical growth at . For example, the functions and are treated. The and norm estimates are established for any radially symmetric solution which has exactly zeros in the interval . Here are independent of and .

**[1]**H. Berestycki and P.-L. Lions,*Nonlinear scalar field equations*, II.*Existence of infinitely many solutions*, Arch. Rational Mech. Anal.**82**(1983), 347-375. MR**695536 (84h:35054b)****[2]**M. Grillakis,*Existence of nodal solutions of semilinear equations in*, J. Differential Equations**85**(1990), 367-400. MR**1054554 (91k:35080)****[3]**P. Hartman,*Ordinary differential equations*, 2nd ed., Birkhäuser, Boston, 1982. MR**658490 (83e:34002)****[4]**C. Jones and T. Küpper,*On the infinitely many solutions of a semilinear elliptic equation*, SIAM J. Math. Anal.**17**(1986), 803-835. MR**846391 (87h:35261)****[5]**R. Kajikiya,*Sobolev norms of radially symmetric oscillatory solutions for superlinear elliptic equations*, Hiroshima Math. J.**20**(1990), 259-276. MR**1063363 (91k:35092)****[6]**-,*Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates*, Hiroshima Math. J.**21**(1991), 111-161. MR**1091434 (92a:35061)****[7]**-,*Nodal solutions of superlinear elliptic equations in symmetric domains*, Advances in Math. Sci. Appl.**3**(1994), 219-266. MR**1287930 (95j:35082)****[8]**K. McLeod, W. C. Troy and F. B. Weissler,*Radial solutions of**with prescribed numbers of zeros*, J. Differential Equations**83**(1990), 368-378. MR**1033193 (90m:35021)****[9]**S. I. Pohozaev,*Eigenfunctions of the equation*, Soviet Math. Dokl.**5**(1965), 1408-1411.**[10]**W. A. Strauss,*Existence of solitary waves in higher dimensions*, Comm. Math. Phys.**55**(1977), 149-162. MR**0454365 (56:12616)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J60,
34B15,
35B05,
35B45

Retrieve articles in all journals with MSC: 35J60, 34B15, 35B05, 35B45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1995-1290720-4

Keywords:
Semilinear elliptic equation,
radially symmetric solution,
norm estimate

Article copyright:
© Copyright 1995
American Mathematical Society