Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Heegaard splittings of Seifert fibered spaces with boundary


Author: Jennifer Schultens
Journal: Trans. Amer. Math. Soc. 347 (1995), 2533-2552
MSC: Primary 57N10
DOI: https://doi.org/10.1090/S0002-9947-1995-1297537-5
MathSciNet review: 1297537
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give the classification theorem for Heegaard splittings of fiberwise orientable Seifert fibered spaces with nonempty boundary. A thin position argument yields a reducibility result which, by induction, shows that all Heegaard splittings of such manifolds are vertical in the sense of Lustig-Moriah. Algebraic arguments allow a classification of the vertical Heegaard splittings.


References [Enhancements On Off] (What's this?)

  • [1] M. Boileau, D.J. Collins, and H. Zieschang, Genus $ 2$ Heegaard decompositions of small Seifert manifolds, IHES/M/89/27
  • [2] M. Boileau and J.P. Otal, Groupe des diffeotopies de certaines varietes de Seifert, C. R. Acad. Sci. Paris Ser. 1 303 (1986). MR 849619 (87g:57022)
  • [3] A. Casson and C. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), 275-283. MR 918537 (89c:57020)
  • [4] D. Gabai, Foliations and the topology of $ 3$-manifolds III, J. Differential Geometry 26 (1987), 479-536. MR 910018 (89a:57014b)
  • [5] C. Gordon and J. Luecke, Knots are determined by their complement, J. Amer. Math. Soc. 2 (1989). MR 965210 (90a:57006a)
  • [6] M. Lustig, Nielsen equivalence and simple-homotopy type, Proc. London Math. Soc. (3) 62 (1991), 537-562. MR 1095232 (92a:57025)
  • [7] M. Lustig and Y. Moriah, Nielsen equivalence in Fuchsian groups and Seifert fibered spaces, Topology 30 (1991), pp. 191-204. MR 1098913 (92e:57001)
  • [8] Yoav Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988), 465-481. MR 928492 (89d:57010)
  • [9] John Milnor, Morse theory, Lecture Notes by M. Spivak and R. Wells, Ann. of Math. Stud., no. 51, Princeton Univ. Press. MR 0163331 (29:634)
  • [10] -, Lectures on the $ h$-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Math. Notes, Princeton Univ. Press, 1965 MR 0190942 (32:8352)
  • [11] M. Scharlemann and A. Thompson, Heegaard splittings of (surface) $ \times I$ are standard, Math. Ann. 295 (1993), 549-564. MR 1204837 (94b:57020)
  • [12] J. Schultens, The classification of Heegaard splittings for (closed orientable surface) $ \times {S^1}$, Proc. London Math. Soc. (3) 67 (1993), 425-448. MR 1226608 (94d:57043)
  • [13] P. Scott, The eight geometries of $ 3$-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. MR 705527 (84m:57009)
  • [14] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238. Translation by W. Heil, memo notes, Florida State University, 1976. MR 1555366
  • [15] H. Zieschang, E. Vogt, and H.D. Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Math., vol. 835, Springer-Verlag, 1988. MR 606743 (82h:57002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10

Retrieve articles in all journals with MSC: 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1297537-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society