Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the number of solutions of a third-order boundary value problem


Author: Eva Rovderová
Journal: Trans. Amer. Math. Soc. 347 (1995), 3079-3092
MSC: Primary 34B15
MathSciNet review: 1243172
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the number of solutions of the third-order boundary value problem $ y''' = f(t,y,y',y'')$, $ y(0) = {A_0}$, $ y'(0) = {A_1}$, $ y''(T) = B$. This number of solutions is investigated in connection with the number of zeros of a solution for the corresponding variational problem.


References [Enhancements On Off] (What's this?)

  • [1] S. Fučík and A. Kufner, Nonlinear differential equations, SNTL, Prague, 1978. (Czech)
  • [2] Michal Greguš and Milan Gera, Some results in the theory of a third-order linear differential equation, Ann. Polon. Math. 42 (1983), 93–102. MR 728072
  • [3] M. Greguš, M. Švec, and V. Šeda, Ordinary differential equations, Alfa, Bratislava, 1985. (Slovak)
  • [4] M. Greguš, Linear differential equation of the third order, Veda, Bratislava, 1981. (Slovak)
  • [5] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • [6] M. A. Krasnosel′skiĭ, Polozhitelnye resheniya operatornykh uravnenii., Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow], 1962 (Russian). MR 0145331
  • [7] B. N. Petrov, V. Yu. Rutkovskii, and S. D. Zemlyakov, Adaptive coordinate-parameter control of flying apparatuses, control in cosmic space, vol. 1, Nauka, Moscow, 1972. (Russian)
  • [8] V. Rocard, Dynamique générale des vibrations, Masson, Paris, 1949. (French)
  • [9] E. Rovderová, The number of solutions of two point nonlinear boundary value problems, Dissertation Thesis, 1993.
  • [10] E. Sadyrbaev, About the number of solutions of the two point boundary value problem, Latvian Math. Ann. 32 (1988), 37-41. (Russian)
  • [11] N. I. Vasiliev and Ju. A. Klokov, The elements of theory of boundary value problems for ordinary differential equations, Zinatne, Riga, 1978. (Russian)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B15

Retrieve articles in all journals with MSC: 34B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1243172-4
Keywords: Third-order nonlinear differential equations, boundary conditions, variation equation, index of a solution
Article copyright: © Copyright 1995 American Mathematical Society