Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A principle of linearized stability for nonlinear evolution equations


Author: Nobuyuki Kato
Journal: Trans. Amer. Math. Soc. 347 (1995), 2851-2868
MSC: Primary 34G20; Secondary 34D05, 34K30, 35K55, 47N20
DOI: https://doi.org/10.1090/S0002-9947-1995-1290722-8
MathSciNet review: 1290722
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a principle of linearized stability of stationary solutions to nonlinear evolution equation in Banach spaces. The well-known semilinear case is shown to fit into our framework. Applications to nonlinear population dynamics and to functional differential equations are also considered.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin and I. Ekeland, Applied nonlinear analysis, Wiley-Interscience, New York, 1984. MR 749753 (87a:58002)
  • [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Groningen, 1976. MR 0390843 (52:11666)
  • [3] H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espace de Hilbert, North-Holland, Amsterdam, 1973.
  • [4] W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential Equations in Banach Spaces (A. Favini and E. Obrecht, eds.), Lecture Notes in Math., vol. 1223, Springer-Verlag, 1986, pp. 61-73. MR 872517 (88k:47083)
  • [5] H. Frankowska, Local controllability and infinitesimal generators of semigroups of set-valued maps, SIAM J. Control 25 (1987), 412-432. MR 877070 (88k:34013)
  • [6] A. Grabosch, Translation semigroups and their linearizations on spaces of integrable functions, Trans. Amer. Math. Soc. 311 (1989), 357-390. MR 974781 (90b:47116)
  • [7] G. Greiner, Linearized stability for hyperbolic evolution equations with semilinear boundary conditions, Semigroup Forum 38 (1989), 203-214. MR 976203 (90c:47116)
  • [8] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, 1981. MR 610244 (83j:35084)
  • [9] N. Kato, On the second derivatives of convex functions on Hilbert spaces, Proc. Amer. Math. Soc. 106 (1989), 697-705. MR 960646 (90b:47097)
  • [10] S. Oharu and T. Takahashi, Characterization of nonlinear semigroups associated with semilinear evolution equations, Trans. Amer. Math. Soc. 311 (1989), 593-619. MR 978369 (90a:47165)
  • [11] M. E. Parrot, Positivity and a principle of linearized stability for delay-differential equations, Differential Integral Equations 2 (1989), 170-182. MR 984185 (90b:34110)
  • [12] A. T. Plant, Stability of nonlinear functional differential equations using weighted norms, Houston J. Math. 3 (1977), 99-108. MR 0430478 (55:3483)
  • [13] J. Prüß, Stability analysis for equibria in age-specific population dynamics, Nonlinear Anal. 7 (1983), 1291-1312. MR 726474 (85c:92036)
  • [14] R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. Poincaré Analyse Non Linéaire 6 (1989), 449-482. MR 1019126 (90k:90140)
  • [15] N. Sanekata, Abstract quasi-linear equations of evolution in nonreflexive Banach spaces, Hiroshima Math. J. 19 (1989), 109-139. MR 1009665 (90i:47068)
  • [16] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1982. MR 1301779 (95g:35002)
  • [17] G. F. Webb, Theory of nonlinear age-dependent population dynamics, Marcel Dekker, New York, 1985. MR 772205 (86e:92032)
  • [18] G. F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230. MR 0402237 (53:6058)
  • [19] G. F. Webb, Continuous nonilinear perturbations of linear accretive operators in Banach spaces, J. Funct. Anal. 10 (1972), 191-203. MR 0361965 (50:14407)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34G20, 34D05, 34K30, 35K55, 47N20

Retrieve articles in all journals with MSC: 34G20, 34D05, 34K30, 35K55, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1290722-8
Keywords: Linearized stability, $ m$-accretive operators, proto-derivatives, nonlinear evolution equations, population dynamics, functional differential equations
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society