Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Lamé operators which are pull-backs of hypergeometric ones


Author: Bruno Chiarellotto
Journal: Trans. Amer. Math. Soc. 347 (1995), 2753-2780
MSC: Primary 34A20; Secondary 14E20, 14H30, 30F40, 34B30
DOI: https://doi.org/10.1090/S0002-9947-1995-1308004-4
MathSciNet review: 1308004
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a method that would allow one to calculate the number of Lamé operators, $ {\mathcal{L}_n}$, $ n \in {\mathbf{N}}$, with prescribed finite monodromy and do the calculation for the case $ n = 1$. We find a bound for the degree over $ {\mathbf{Q}}$ of the field of definition of the coefficients of a Lamé operator with prescribed finite monodromy and give examples of Lamé operators with finite monodromy. Finally we study Lamé operators with infinite monodromy and generic second order differential operators which are pull-backs of hypergeometric ones under algebraic maps.


References [Enhancements On Off] (What's this?)

  • [BA] F. Baldassarri, On algebraic solutions of Lamé differential equation, J. Differential Equations 41 (1981), 44-58. MR 626620 (84a:34006)
  • [BA1] -, On second order linear differential equations on algebraic curves, Amer. J. Math. 102 (1980), 517-535. MR 573101 (81k:14025)
  • [BAT] -, Towards a Schwarz list for Lamé differential operators via division points on elliptic curves, preprint.
  • [BA-DW] F. Baldassarri and B. Dwork, On second order differential equations with algebraic solutions, Amer. J. Math. 101 (1979), 42-76. MR 527825 (81d:34002)
  • [BATE] H. Bateman (manuscript project), Higher transcendental functions, McGraw-Hill, 1953. MR 0058756 (15:419i)
  • [BE] A. Beauville, Les familles stables de courbes elliptiques sur $ {{\mathbf{P}}^1}$ admettant quatre fibres singulières, C. R. Acad. Sci. Paris 294 (1982), 657-660. MR 664643 (83h:14008)
  • [BE-ST] F. Beukers and J. Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic $ K3$-surfaces, Math. Ann. 271 (1985), 269-304. MR 783555 (86j:14045)
  • [BE-HE] F. Beukers and G. Heckman, Monodromy for the hypergeometric function $ _n{F_{n - 1}}$, Invent. Math. 95 (1989), 325-354. MR 974906 (90f:11034)
  • [CH-CH] D. V. Chudnovsky and G. V. Chudnovsky, Application of Padé approximations to the Grothendieck conjecture on linear differential equations, Lecture Notes in Math., vol. 1135, Springer-Verlag, pp. 83-84. MR 803350 (87d:11053)
  • [CH-CH1] -, Transcendental methods and theta-functions, Proc. Sympos. Pure Math., vol. 49, part 2, Amer. Math. Soc., Providence, RI, 1989, pp. 167-232. MR 1013173 (91e:11080)
  • [CH-CH2] -, A random walk in higher arithmetic, Adv. Appl. Math. 7 (1986), 101-122. MR 834223 (87i:11140)
  • [CO] F. Coppi, Tesi di laurea, Universitá di Padova, 1992.
  • [DW] B. Dwork, Arithmetic theory of differential equations, Sympos. Math., vol. 24, Academic Press, London, 1981, pp. 225-244. MR 619250 (82j:12021)
  • [DW1] -, Differential operators with nilpotent $ p$-curvature, Amer. J. Math. (to appear).
  • [FO] O. Forster, Lectures on Riemann surfaces, Graduate Texts in Math., 81, Springer-Verlag, New York and Berlin, 1977. MR 1185074 (93h:30061)
  • [HO] T. Honda, Algebraic differential equations, Sympos. Math., vol. 24, Academic Press, London, 1981, pp. 169-204. MR 619247 (83j:14010)
  • [HU] D. Husemöller, Elliptic curves, Springer-Verlag, 1987. MR 868861 (88h:11039)
  • [KA] N. Katz, Algebraic solutions of differential equations; $ p$-curvature and the Hodge filtration, Invent. Math. 18 (1972), 1-118. MR 0337959 (49:2728)
  • [KA1] -, Nilpotent connections and the monodromy theorem, Publ. Math. Inst. Hautes Études Sci. 39 (1971), 355-412.
  • [KA2] -, A conjecture in the arithmetic theory groups, Invent. Math. 87 (1987), 13-61.
  • [KI] T. Kimura, On fuchsian differential equations reducible to hypergeometric equations by linear transformations, Funkcial. Ekvac. 13 (1970), 213-232. MR 0301271 (46:429)
  • [MA] W. S. Massey, A basic course in algebraic topology, Graduate Texts in Math., 127, Springer-Verlag, New York and Berlin, 1991. MR 1095046 (92c:55001)
  • [PL] E. Poole, Introduction to the theory of linear differential equations, Oxford, 1936.
  • [SE] L. Greenberg, Maximal fuchsian groups, Bull. Amer. Math. Soc. 69 (1963), 569-573. MR 0148620 (26:6127)
  • [SE-TR] H. Seifert and W. Threlfall, A textbook of topology, Academic Press, New York, 1980. MR 575168 (82b:55001)
  • [SI] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., 106, Springer-Verlag, New York and Berlin, 1986. MR 817210 (87g:11070)
  • [SIN] M. F. Singer, Algebraic solutions of $ n$th order linear differential equations, Proc. Queen's Number Theory Conf. 1979, Queen's Paper in Pure and Appl. Math., 54, Queen's Univ. Kingston, 1980, pp. 379-420. MR 634699 (83b:12022)
  • [TR] M. Tretkoff, Algebraic extentions of the field of rational functions, Comm. Pure Appl. Math. 24 (1979), 491-497. MR 0280467 (43:6187)
  • [WW] E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge Univ. Press, 1927.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34A20, 14E20, 14H30, 30F40, 34B30

Retrieve articles in all journals with MSC: 34A20, 14E20, 14H30, 30F40, 34B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1308004-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society