Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Orbits of rank one and parallel mean curvature


Author: Carlos Olmos
Journal: Trans. Amer. Math. Soc. 347 (1995), 2927-2939
MSC: Primary 53C30; Secondary 53C42
DOI: https://doi.org/10.1090/S0002-9947-1995-1308018-4
MathSciNet review: 1308018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {M^n}(n \geqslant 2)$ be a (extrinsic) homogeneous irreducible full submanifold of Euclidean space with $ rank(M) = k \geqslant 1$ (i.e., it admits $ k \geqslant 1$ locally defined, linearly independent parallel normal vector fields). We prove that $ M$ must be contained in a sphere. This result toghether with previous work of the author about homogeneous submanifolds of higher rank imply, in particular, the following theorem: A homogeneous irreducible submanifold of Euclidean space with parallel mean curvature vector is either minimal, or minimal in a sphere, or an orbit of the isotropy representation of a simple symmetric space.


References [Enhancements On Off] (What's this?)

  • [D] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), 125-137. MR 773051 (86k:22019)
  • [E] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333-340. MR 0288701 (44:5897)
  • [F] D.Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93. MR 565140 (81i:53040)
  • [HOT] E. Heintze, C. Olmos and G. Thorbergsson, Submanifolds with constant principal curvatures and normal holonomy groups, Internat. J. Math. 2 (1991), 167-175. MR 1094702 (92e:53094)
  • [M] J. D. Moore, Isometric immersions of Riemannian products, J. Differential Geometry 5 (1971), 159-168. MR 0307128 (46:6249)
  • [O1] C. Olmos, The normal holonomy group, Proc. Amer. Math. Soc. 110 (1990), 813-818. MR 1023346 (91b:53069)
  • [O2] -, Isoparametric submanifolds and their homogeneous structures, J. Differential Geometry 38 (1993), 225-234. MR 1237484 (95a:53102)
  • [O3] -, Homogeneous submanifolds of higher rank and parallel mean curvature, J. Differential Geometry 39 (1994), 605-627. MR 1274132 (95h:53079)
  • [PT] R. Palais and C.-L. Terng, Critical point theory and submanifold geometry, Lecture Notes in Math., vol. 1353, Springer-Verlag, Berlin, 1988. MR 972503 (90c:53143)
  • [S] W. Strübing, Isoparametric submanifolds, Geom. Dedicata 20 (1986), 367-387. MR 845431 (87j:53084)
  • [Te] C.-L. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geometry 21 (1985), 79-107. MR 806704 (87e:53095)
  • [Th] G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. 133 (1991), 429-446. MR 1097244 (92d:53053)
  • [V] J. Vargas, A symmetric space of noncompact type has no equivariant isometric immersions into the Euclidean space, Proc. Amer. Math. Soc. 81 (1981), 149-150. MR 589158 (81j:53054)
  • [W] A. West, private communication.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C30, 53C42

Retrieve articles in all journals with MSC: 53C30, 53C42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1308018-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society