Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Finite generalized triangle groups


Authors: J. Howie, V. Metaftsis and R. M. Thomas
Journal: Trans. Amer. Math. Soc. 347 (1995), 3613-3623
MSC: Primary 20F05; Secondary 20D99
DOI: https://doi.org/10.1090/S0002-9947-1995-1303121-7
MathSciNet review: 1303121
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an almost complete classification of those generalized triangle groups that are finite, building on previous results of Baumslag, Morgan and Shalen [1], Conder [4], Rosenberger [12] and Levin and Rosenberger [11]. There are precisely two groups for which we cannot decide whether or not they are finite.


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, J. W. Morgan and P. B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc. 102 (1987), 25-31. MR 886432 (88g:20062)
  • [2] S. Boyer, On proper powers in free products and Dehn surgery, J. Pure Appl. Algebra 51 (1988), 217-229. MR 946573 (89m:57003)
  • [3] C. M. Campbell and R. M. Thomas, On infinite groups of Fibonacci type, Proc. Edinburgh Math. Soc. 29 (1986), 225-232. MR 847876 (88a:20043)
  • [4] M. D. E. Conder, Three-relator quotients of the modular group, Quart. J. Math. Oxford (2) 38 (1987), 427-447. MR 916226 (88m:20069)
  • [5] A. J. Duncan and J. Howie, One-relator products with high powered relations, Geometric Group Theory, vol. I (G.A. Niblo and M. Roller, eds.), London Mathematical Society Lecture Notes 181, Cambridge University Press, 1993, pp. 48-74. MR 1238515 (94i:20066)
  • [6] B. Fine, J. Howie and G. Rosenberger, One-relator quotients and free products of cyclics, Proc. Amer. Math. Soc. (2) 102 (1988), 249-254. MR 920981 (89a:20035)
  • [7] B. Fine, F. Levin and G. Rosenberger, Free subgroups and decompositions of one-relator products of cyclics. Part 1: The Tits alternative, Arch. Math. 50 (1988), 97-109. MR 930108 (89c:20050)
  • [8] B. Fine and G. Rosenberger, A note on generalized triangle groups, Abh. Math. Sem. Univ. Hamburg 56 (1986), 233-244. MR 882417 (88d:20047)
  • [9] J. Howie, The quotient of a free product of groups by a single high-powered relator. I. Pictures. Fifth and higher powers, Proc. London Math. Soc. 59 (1989), 507-540. MR 1014869 (90j:20055)
  • [10] J. Howie and R. M. Thomas, The groups $ (2,3,p;q);$; asphericity and a conjecture of Coxeter, J. Algebra 154 (1993), 289-309. MR 1206122 (94a:20052)
  • [11] F. Levin and G. Rosenberger, On free subgroups of generalized triangle groups, Part II, Proceedings of the Ohio State-Denison Conference on Group Theory (S. Seghal et al., eds.), World Scientific, 1993, pp. 206-222. MR 1348902 (96e:20043)
  • [12] G. Rosenberger, On free subgroups of generalized triangle groups, Algebra i Logika 28 (1989), 227-240. MR 1065650 (91g:20045)
  • [13] R. M. Thomas, Cayley graphs and group presentations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 385-387. MR 932663 (89e:20071)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F05, 20D99

Retrieve articles in all journals with MSC: 20F05, 20D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1303121-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society