Integrally closed modules over twodimensional regular local rings
Author:
Vijay Kodiyalam
Journal:
Trans. Amer. Math. Soc. 347 (1995), 35513573
MSC:
Primary 13H05; Secondary 13C13
MathSciNet review:
1308016
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper is based on work of Rees on integral closures of modules and initiates the study of integrally closed modules over twodimensional regular local rings in analogy with the classical theory of complete ideals of Zariski. The main results can be regarded as generalizations of Zariski's product theorem. They assert that the tensor product mod torsion of integrally closed modules is integrally closed, that the symmetric algebra mod torsion of an integrally closed module is a normal domain and that the first Fitting ideal of an integrally closed module is an integrally closed ideal. A construction of indecomposable integrally closed modules is also given. The primary technical tool is a study of the BuchsbaumRim multiplicity.
 [BrnHrz]
Winfried
Bruns and Jürgen
Herzog, CohenMacaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
(95h:13020)
 [BchSnb]
David
A. Buchsbaum and David
Eisenbud, Some structure theorems for finite free resolutions,
Advances in Math. 12 (1974), 84–139. MR 0340240
(49 #4995)
 [BchRm]
David
A. Buchsbaum and Dock
S. Rim, A generalized Koszul complex. II.
Depth and multiplicity, Trans. Amer. Math.
Soc. 111 (1964),
197–224. MR 0159860
(28 #3076), http://dx.doi.org/10.1090/S00029947196401598607
 [Ctk]
Steven
D. Cutkosky, Factorization of complete ideals, J. Algebra
115 (1988), no. 1, 144–149. MR 937605
(89d:13006), http://dx.doi.org/10.1016/00218693(88)902864
 [Ctk2]
Steven
Dale Cutkosky, Complete ideals in algebra and geometry,
Commutative algebra: syzygies, multiplicities, and birational algebra
(South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc.,
Providence, RI, 1994, pp. 27–39. MR 1266177
(95g:13023), http://dx.doi.org/10.1090/conm/159/01502
 [Ghn]
Hartmut
Göhner, Semifactoriality and Muhly’s condition
(𝑁) in two dimensional local rings, J. Algebra
34 (1975), 403–429. MR 0379489
(52 #394)
 [Hnk]
Craig
Huneke, Complete ideals in twodimensional regular local
rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res.
Inst. Publ., vol. 15, Springer, New York, 1989,
pp. 325–338. MR 1015525
(90i:13020), http://dx.doi.org/10.1007/9781461236603_16
 [Hnk2]
Craig
Huneke, The primary components of and integral closures of ideals
in 3dimensional regular local rings, Math. Ann. 275
(1986), no. 4, 617–635. MR 859334
(87k:13038), http://dx.doi.org/10.1007/BF01459141
 [HnkSll]
Craig
Huneke and Judith
D. Sally, Birational extensions in dimension two and integrally
closed ideals, J. Algebra 115 (1988), no. 2,
481–500. MR
943272 (89e:13025), http://dx.doi.org/10.1016/00218693(88)902748
 [JhnVrm]
Bernard
L. Johnston and Jugal
Verma, On the length formula of Hoskin and Deligne and associated
graded rings of twodimensional regular local rings, Math. Proc.
Cambridge Philos. Soc. 111 (1992), no. 3,
423–432. MR 1151321
(93e:13004), http://dx.doi.org/10.1017/S0305004100075526
 [Ktz]
D.
Katz, Reduction criteria for modules, Comm. Algebra
23 (1995), no. 12, 4543–4548. MR 1352554
(96j:13022), http://dx.doi.org/10.1080/00927879508825485
 [KlmThr]
Steven
Kleiman and Anders
Thorup, A geometric theory of the BuchsbaumRim multiplicity,
J. Algebra 167 (1994), no. 1, 168–231. MR 1282823
(96a:14007), http://dx.doi.org/10.1006/jabr.1994.1182
 [Krb]
D.
Kirby, On the BuchsbaumRim multiplicity associated with a
matrix, J. London Math. Soc. (2) 32 (1985),
no. 1, 57–61. MR 813385
(87d:13025), http://dx.doi.org/10.1112/jlms/s232.1.57
 [KrbRs]
D. Kirby and D. Rees, Hilbert functions of multigraded modules and the BuchsbaumRim multiplicity.
 [Lpm]
Joseph
Lipman, On complete ideals in regular local rings, Algebraic
geometry and commutative algebra, Vol.\ I, Kinokuniya, Tokyo, 1988,
pp. 203–231. MR 977761
(90g:14003)
 [Lpm2]
Joseph
Lipman, Rational singularities, with applications to algebraic
surfaces and unique factorization, Inst. Hautes Études Sci.
Publ. Math. 36 (1969), 195–279. MR 0276239
(43 #1986)
 [ZrsSml]
Oscar
Zariski and Pierre
Samuel, Commutative algebra. Vol. II, The University Series in
Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.
J.TorontoLondonNew York, 1960. MR 0120249
(22 #11006)
 [BrnHrz]
 W. Bruns and J. Herzog, CohenMacaulay rings, Cambridge Stud. Adv. Math., 39, Cambridge University Press, 1993. MR 1251956 (95h:13020)
 [BchSnb]
 D. A. Buchsbaum and D. Eisenbud, Some structure theorems for finite free resolutions, Adv. Math. 12 (1974), 84139. MR 0340240 (49:4995)
 [BchRm]
 D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197224. MR 0159860 (28:3076)
 [Ctk]
 S. D. Cutkosky, Factorization of complete ideals, J. Algebra 115 (1988), 151204. MR 937605 (89d:13006)
 [Ctk2]
 , Complete ideals in algebra and geometry, Commutative Algebra: Syzygies, Multiplicities and Birational Algebra, Contemporary Math., vol. 159, Amer. Math. Soc., Providence, RI, 1993, pp. 2739. MR 1266177 (95g:13023)
 [Ghn]
 H. Gohner, Semifactoriality and Muhly's condition in twodimensional local rings, J. Algebra 34 (1975), 403429. MR 0379489 (52:394)
 [Hnk]
 C. Huneke, Complete ideals in two dimensional regular local rings, Commutative Algebra, Proceedings of a Microprogram, MSRI publ. no. 15, SpringerVerlag, 1989, pp. 417436. MR 1015525 (90i:13020)
 [Hnk2]
 , The primary components of and integral closures of ideals in threedimensional regular local rings, Math. Ann. 275 (1986), 617635. MR 859334 (87k:13038)
 [HnkSll]
 C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481500. MR 943272 (89e:13025)
 [JhnVrm]
 B. Johnston and J. K. Verma, On the length formula of Hoskin and Deligne and associated graded rings of twodimensional regular local rings, Math. Proc. Cambridge Philos. Soc. 111 (1992), 423432. MR 1151321 (93e:13004)
 [Ktz]
 D. Katz, Reduction criteria for modules, Preprint. MR 1352554 (96j:13022)
 [KlmThr]
 S. Kleiman and A. Thorup, A geometric theory of the BuchsbaumRim multiplicity, J. Algebra 167 (1994), 168231. MR 1282823 (96a:14007)
 [Krb]
 D. Kirby, On the BuchsbaumRim multiplicity associated with a matrix, J. London Math. Soc. (2) 32 (1985), 5761. MR 813385 (87d:13025)
 [KrbRs]
 D. Kirby and D. Rees, Hilbert functions of multigraded modules and the BuchsbaumRim multiplicity.
 [Lpm]
 J. Lipman, On complete ideals in regular local rings, Algebraic Geometry and Commutative Algebra in honor of Masayoshi Nagata, Academic Press, 1987, pp. 203231. MR 977761 (90g:14003)
 [Lpm2]
 , Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Etudes SCi. 36 (1969), 195279. [Rs] D. Rees, Reduction of modules, Math. Proc. Cambridge Philos. Soc. 101 (1987), 431449. MR 0276239 (43:1986)
 [ZrsSml]
 O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand Reinhold, New York, 1960. MR 0120249 (22:11006)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
13H05,
13C13
Retrieve articles in all journals
with MSC:
13H05,
13C13
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199513080160
PII:
S 00029947(1995)13080160
Article copyright:
© Copyright 1995
American Mathematical Society
