Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Curves in Grassmannians

Author: David Perkinson
Journal: Trans. Amer. Math. Soc. 347 (1995), 3179-3246
MSC: Primary 14H60; Secondary 14H45, 14M15
MathSciNet review: 1308020
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Curves in Grassmannians are analyzed using the special structure of the tangent bundle of a Grassmannian, resulting in a theory of inflections or Weierstrass behavior. A duality theorem is established, generalizing the classical duality theorem for projective plane curves. The appendices summarize basic information about principal parts bundles and their application to studying the inflections of curves in projective space.

References [Enhancements On Off] (What's this?)

  • [AK] Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
  • [Ba1] E. Ballico, Weierstrass loci for vector bundles on curves, Illinois J. Math. 40 (1996), no. 2, 304–309. MR 1398096
  • [Ba2] -, On the differential properties of algebraic morphisms into Grassmannians, preprint.
  • [Br] A. Bruguières, Maps of elliptic curves to Grassmannians, Compositio Math. 63 (1987), 15-40.
  • [Ca] A. Cayley, On the sextactic points of a plane curve, Philos. Trans. 155 (1865), 545-578.
  • [Cn] Giuseppe Canuto, Associated curves and Plücker formulas in Grassmannians, Invent. Math. 53 (1979), no. 1, 77–90. MR 538685,
  • [E] W. L. Edge, The theory of ruled surfaces, Cambridge Univ. Press, London, 1931.
  • [F] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [FKPT] W. Fulton, S. Kleiman, R. Piene, and H. Tai, Some intrinsic and extrinsic characterizations of the projective space, Bull. Soc. Math. France 113 (1985), no. 2, 205–210 (English, with French summary). MR 820319
  • [G] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 0238860
  • [GH1] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [GH2] Phillip Griffiths and Joseph Harris, Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 3, 355–452. MR 559347
  • [H] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [J] Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
  • [Ka] Akikuni Kato, Singularities of projective embedding (points of order 𝑛 on an elliptic curve), Nagoya Math. J. 45 (1972), 97–107. MR 0306206
  • [K1] Steven L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396. MR 0568897
  • [K2] -, Concerning the dual variety, 18th Scandanavian Congress of Math., Aarhus 1980,
  • 1. (E. Balslev, ed.), Progress in Math 11, Birkhäuser, Boston, 1980, pp. 386-396.
  • [L1] D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Institut Mittag-Leffler, Report No. 11 (1981).
  • [L2] Dan Laksov, Some enumerative properties of secants to non-singular projective schemes, Math. Scand. 39 (1976), no. 2, 171–190 (1977). MR 0437532,
  • [M] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [Pe1] D. Perkinson, Jet bundles and curves in Grassmannians thesis, University of Chicago, 1990.
  • [Pe2] -, Principal parts of line bundles on toric varieties, Matematisk Institutt, University of Oslo, preprint.
  • [Pi1] Ragni Piene, Numerical characters of a curve in projective 𝑛-space, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 475–495. MR 0506323
  • [Pi2] Ragni Piene, A note on higher order dual varieties, with an application to scrolls, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 335–342. MR 713259
  • [PS] Ragni Piene and Gianni Sacchiero, Duality for rational normal scrolls, Comm. Algebra 12 (1984), no. 9-10, 1041–1066. MR 738534,
  • [S] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H60, 14H45, 14M15

Retrieve articles in all journals with MSC: 14H60, 14H45, 14M15

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society