Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Global uniqueness for a two-dimensional semilinear elliptic inverse problem

Authors: Victor Isakov and Adrian I. Nachman
Journal: Trans. Amer. Math. Soc. 347 (1995), 3375-3390
MSC: Primary 35R30; Secondary 35J60
MathSciNet review: 1311909
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a general class of nonlinear Schrödinger equations $ - \Delta u + a(x,u) = 0$ in a bounded planar domain $ \Omega $ we show that the function $ a(x,u)$ can be recovered from knowledge of the corresponding Dirichlet-to-Neumann map on the boundary $ \partial \Omega $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R30, 35J60

Retrieve articles in all journals with MSC: 35R30, 35J60

Additional Information

PII: S 0002-9947(1995)1311909-1
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia