Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Global uniqueness for a two-dimensional semilinear elliptic inverse problem


Authors: Victor Isakov and Adrian I. Nachman
Journal: Trans. Amer. Math. Soc. 347 (1995), 3375-3390
MSC: Primary 35R30; Secondary 35J60
DOI: https://doi.org/10.1090/S0002-9947-1995-1311909-1
MathSciNet review: 1311909
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a general class of nonlinear Schrödinger equations $ - \Delta u + a(x,u) = 0$ in a bounded planar domain $ \Omega $ we show that the function $ a(x,u)$ can be recovered from knowledge of the corresponding Dirichlet-to-Neumann map on the boundary $ \partial \Omega $.


References [Enhancements On Off] (What's this?)

  • [A-S] M. Aizenman and B. Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273. MR 644024 (84a:35062)
  • [B] Yu. M. Berezanskii, Trudy Moskov. Mat. Obshch. 7 (1958), 3-62.
  • [G-T] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1977. MR 0473443 (57:13109)
  • [Is 1] V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations 92 (1991), 305-317. MR 1120907 (92g:35044)
  • [Is 2] -, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal. 124 (1993), 1-13. MR 1233645 (94h:35263)
  • [Is-Su] V. Isakov and Z. Sun, The inverse scattering at fixed energies in two dimensions, Indiana Univ. Math. J. (1995) (to appear). MR 1375354 (96m:35334)
  • [Is-Sy] V. Isakov and J. Sylvester, Global uniqueness for a semilinear elliptic inverse problem, Comm. Pure Appl. Math 47 (1994), 1403-1410. MR 1295934 (95h:35243)
  • [N 1] A.I. Nachman, Reconstructions from boundary measurements, Ann. of Math. 128 (1988), 531-577. MR 970610 (90i:35283)
  • [N 2] -, Inverse scattering at fixed energy, Proc. 10th International Congress on Math. Phys., Leipzig 1991, edited by K. Schmüdgen, Springer-Verlag, 1992, pp. 434-441. MR 1386440
  • [N 3] -, Global uniqueness for a two-dimensional inverse boundary value problem, Univ. of Rochester, Dept. of Math. Preprint Series 19, 1993;Ann. of Math. (1995) (to appear).
  • [No] R. G. Novikov, The inverse scattering problem on a fixed energy level for the two dimensional Schrödinger operator, J. Funct. Anal 103 (1992), 409-463. MR 1151554 (93e:35080)
  • [S 1] Z. Sun, On an inverse boundary value problem in two dimensions, Comm. Partial Differential Equations 14 (1989), 1101-1113. MR 1017066 (91i:35210)
  • [S 2] -, On a quasilinear inverse boundary value problem, Math. Z. (1995) (to appear). MR 1376299 (96m:35109)
  • [Su-U1] Z. Sun and G. Uhlmann, Generic uniqueness for an inverse boundary value problem, Duke Math. J. 62 (1991), 131-155. MR 1104326 (92b:35172)
  • [Su-U2] -, Recovery of singularities for formally determined inverse problems, Comm. Math. Phys. 153 (1993), 431-445. MR 1218927 (94f:35146)
  • [Sy-U] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math 39 (1986), 92-112. MR 820341 (87j:35377)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R30, 35J60

Retrieve articles in all journals with MSC: 35R30, 35J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1311909-1
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society