Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Uniform harmonic approximation
of bounded functions


Author: Stephen J. Gardiner
Journal: Trans. Amer. Math. Soc. 348 (1996), 251-265
MSC (1991): Primary 31B05; Secondary 41A30
DOI: https://doi.org/10.1090/S0002-9947-96-01455-9
MathSciNet review: 1316850
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega$ be an open set in $\mathbb R^n$ and $E$ be a relatively closed subset of $\Omega$. We characterize those pairs $(\Omega,E)$ which have the following property: every function which is bounded and continuous on $E$ and harmonic on $E^0$ can be uniformly approximated by functions harmonic on $\Omega$. Several related results concerning both harmonic and superharmonic approximation are also established.


References [Enhancements On Off] (What's this?)

  • 1 N. U. Arakelyan, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273--286; English transl. in Amer. Math. Soc. Transl. (2) 122 (1984), 85--97.
  • 2 ------, Approximation complexe et propriétés des fonctions analytiques, Actes Congrès Internat. Math., vol. 2, 1970, pp. 595--600.
  • 3 D. H. Armitage and M. Goldstein, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. (3) 68 (1994), 112--126. MR 94i:31005
  • 4 C. Bensouda and P. M. Gauthier, Superharmonic approximation on the closed sets, J. Contemp. Math. Anal. 29 (1994), 11--22.
  • 5 Chen Huaihui and P. M. Gauthier, A maximum principle for subharmonic and plurisubharmonic functions, Canad. J. Math. 35 (1992), 34--39. MR 93a:31013
  • 6 J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York, 1984. MR 85k:31001
  • 7 B. Fuglede, Asymptotic paths for subharmonic functions, Math. Ann. 213 (1975), 261--274. MR 52:775
  • 8 S. J. Gardiner, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble) 44 (1994), 65--91. MR 95a:31006
  • 9 ------, Harmonic approximation, LMS Lecture Notes 221, Cambridge Univ. Press, 1995.
  • 10 P. M. Gauthier, Approximation by (pluri)subharmonic functions: fusion and localization, Canad. J. Math. 44 (1992), 941--950. MR 93i:32018
  • 11 P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 169--183. MR 81m:30033
  • 12 ------, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71--82. MR 84j:31009
  • 13 L. L. Helms, Introduction to potential theory, Krieger, New York, 1975. MR 57:659
  • 14 M. Labrèche, De l'approximation harmonique uniforme, Doctoral thesis, Université de Montréal, 1982.
  • 15 A. A. Nersesyan, Approximation by harmonic functions on closed subsets of planar domains, Soviet J. Contemp. Math. Anal. 25 (1990), 58--66. MR 92e:41013
  • 16 A. Stray, On uniform and asymptotic approximation, Math. Ann. 234 (1978), 61--68. MR 57:9980
  • 17 ------, Vitushkin's method and some problems in approximation theory, Aspects of Contemporary Complex Analysis ( D. A. Brannan and J. G. Clunie, eds.), Academic Press, London, 1980, pp. 351--365. MR 82g:30070

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 31B05, 41A30

Retrieve articles in all journals with MSC (1991): 31B05, 41A30


Additional Information

Stephen J. Gardiner
Affiliation: Department of Mathematics, University College Dublin, Dublin 4, Ireland

DOI: https://doi.org/10.1090/S0002-9947-96-01455-9
Received by editor(s): January 11, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society