The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).


Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Isomorphisms of adjoint Chevalley groups
over integral domains

Author: Yu Chen
Journal: Trans. Amer. Math. Soc. 348 (1996), 521-541
MSC (1991): Primary 20G35, 20E36
MathSciNet review: 1329529
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that every automorphism of an adjoint Chevalley group over an integral domain containing the rational number field is uniquely expressible as the product of a ring automorphism, a graph automorphism and an inner automorphism while every isomorphism between simple adjoint Chevalley groups can be expressed uniquely as the product of a ring isomorphism, a graph isomorphism and an inner automorphism. The isomorphisms between the elementary subgroups are also found having analogous expressions.

References [Enhancements On Off] (What's this?)

  • 1 A. Borel, Linear algebraic groups, Springer--Verlag, New York, 1991, MR 92d:20001.
  • 2 A. Borel, J. Tits, Homomorphismes ``abstraits" de groupes alg$\acute e$brique simples, Ann. of Math. 97 (1973), 499--571, MR 47:5134.
  • 3 N. Bourbaki, Groupes et alg$\grave e$bres de Lie, Hermann, Paris, 1972, MR 58:28083a.
  • 4 R. Carter, Y. Chen, Automorphisms of affine Kac-Moody groups and related Chevalley groups over rings, J. of Algebra 155 (1993), 44--94, MR 94e:17032.
  • 5 Y. Chen, Isomorphic Chevalley groups over integral domains, Rend. Sem. Mat. Univ. Padova 92 (1994), 231--237.
  • 6 C. Chevalley, S$\acute e$minaire sur la classification des groupes de Lie alg$\acute e$briques, Inst. H. Poincare, Paris, 1956/58, MR 21:5696.
  • 7 M. Demazure, A. Grothendieck, Sch$\acute e$mas en groupes III, Springer--Verlag, New York, 1970.
  • 8 J. Humphreys, On the automorphisms of infinite Chevalley groups, Canad. J. Math. 21 (1969), 908--911, MR 40:1397.
  • 9 R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606--615, MR 22:12165.
  • 10 R. Steinberg, Lectures on Chevalley groups, 1967.
  • 11 G. Taddei, Normalit$\acute e$ des groupes $\acute e$l$\acute e$mentaire dans les groupes de Chevalley sur un anneau, Contemp. Math. 55 (1986), 693--710, MR 88a:20054.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20G35, 20E36

Retrieve articles in all journals with MSC (1991): 20G35, 20E36

Additional Information

Yu Chen
Affiliation: Department of Mathematics, University of Turin, Via Carlo Alberto 10, 10123 Torino, Italy

Keywords: Chevalley group, elementary subgroup, integral domain, isomorphism
Received by editor(s): May 2, 1994
Additional Notes: Supported in part by Italian M.U.R.S.T. research grant
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society