Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Asymptotic Expansion for Layer Solutions of a
Singularly Perturbed Reaction-Diffusion System

Author: Xiao-Biao Lin
Journal: Trans. Amer. Math. Soc. 348 (1996), 713-753
MSC (1991): Primary 35K57, 35B25; Secondary 34E10, 34E15
MathSciNet review: 1333395
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a singularly perturbed $n$-dimensional system of reaction--
diffusion equations, assuming that the 0th order solutions possess boundary and internal layers and are stable in each regular and singular region, we construct matched asymptotic expansions for formal solutions in all the regular, boundary, internal and initial layers to any desired order in $\epsilon $. The formal solution shows that there is an invariant manifold of wave-front-like solutions that attracts other nearby solutions. We also give conditions for the wave-front-like solutions to converge slowly to stationary solutions on that manifold.

References [Enhancements On Off] (What's this?)

  • 1. N. Alikakos, P. Bates and G. Fusco, Slow motion for the Cahn--Hilliard equation in one space dimension, J. Differential Equations 90 (1991), 81--135.MR 92a:35152
  • 2. S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations, 67 (1987), 212--242.MR 88d:34018
  • 3. J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t= \epsilon ^2 u_{xx} - f(u)$, Comm. Pure. Appl. Math. 42 (1989), 523--576.MR 90f:35091
  • 4. S.-N. Chow, J. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations, 37 (1980), 351-373.MR 81m:58056
  • 5. G. Da Prato and P. Grisvard, Equations d'evolution abstraites non linéaires de type parabolique, Ann. Mat. Pura. Appl., 120 (1979), 329--396.MR 81d:34052
  • 6. W. Eckhaus, Matching principles and composite expansions, Lecture Notes in Mathematics 594, Springer--Verlag, New York, 1977, 146--177. MR 58:6857
  • 7. W. Eckhaus, Asymptotic analysis of singular perturbations, North--Holland, Amsterdam, 1979.MR 81a:34048
  • 8. John W. Evans, Nerve Axon Equations: I Linear Approximations, Indiana Univ. Math. J., 21 (1972), 877--885.MR 45:1616
  • 9. John W. Evans, Nerve Axon Equations: II Stability at Rest, Indiana Univ. Math. J., 22 (1972), 75--90.MR 48:1729
  • 10. John W. Evans, Nerve Axon Equations: III Stability of the Nerve Impulse, Indiana Univ. Math. J., 22 (1972), 577--593.MR 52:14697
  • 11. John W. Evans, Nerve Axon Equations: IV The Stable and the Unstable Impulse, Indiana Univ. Math. J., 24 (1975), 1169--1190.MR 52:14698
  • 12. P. C. Fife, Pattern formation in reacting and diffusing systems, J. Chem. Phys., 64 (1976), 554--564.
  • 13. P. C. Fife, Singular perturbation and wave front techniques in reaction-diffusion problems, SIAM-AMS Proceedings, 10 (1976),23--50.MR 58:25358
  • 14. P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF, Regional Conference Series in Applied Mathematics, 53, SIAM, 1988. MR 90c:80012
  • 15. P. C. Fife, Diffusive waves in inhomogeneous media, Proc. Edinburgh Math. Soc., 32 (1989), 291--315.MR 90j:35109
  • 16. P. C. Fife and L. Hsiao, The generation of solutions of internal layers, J. Nonlinear Anal. TMA 12 (1988), 19--41.MR 89c:35078
  • 17. G. Fusco and J. Hale, Slow motion manifolds, dormant instability, and singular perturbations, J. Dynamics and Differential Equations 1 (1989), 75--94.MR 90i:35131
  • 18. J. K. Hale and X.-B. Lin, Heteroclinic orbits for retarded functional differential equations, J. Differential Equations 65 (1986), 175--202.MR 88g:34113
  • 19. J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal of Appl. Math. 5 (1988), 367--405.MR 90a:35112
  • 20. C. Jones, Stability of the travelling wave solution of the FizHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), 431--469.MR 86b:35011
  • 21. C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108 (1994), 64--88.
  • 22. X.-B. Lin, Shadowing lemma and singularly perturbed boundary value problems, SIAM J. Appl. Math., 49 (1989), 26--54.MR 90a:34126
  • 23. X.-B. Lin, Heteroclinic bifurcation and singularly perturbed boundary value problems, J. Differential Equations, 84 (1990), 319--382.MR 91d:34055
  • 24. A. Lunardi, On the evolution operator for abstract parabolic equations, Israel J. Math., 60 (1987), 281--314.MR 89f:47066
  • 25. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction--diffusion equations, SIAM J. Math. Anal. 18 (1987), 1726--1770.MR 88j:35089
  • 26. K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984), 225--256.MR 86d:58088
  • 27. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983.MR 86b:47075
  • 28. D. Sattinger, On the stability of travelling waves, Adv. Math., 22 (1976), 312--335.MR 55:8561
  • 29. D. Sattinger, Weighted norms for the stability of travelling waves, J. Differential Equations, 25 (1977), 130--144.MR 56:6123
  • 30. M. Schechter, Principle of functional analysis, Academic Press, New York and London, 1971.MR 56:3607
  • 31. E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 107 (1985), 16--66.MR 86g:34086

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35K57, 35B25, 34E10, 34E15

Retrieve articles in all journals with MSC (1991): 35K57, 35B25, 34E10, 34E15

Additional Information

Xiao-Biao Lin
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695–8205

Keywords: Asymptotic expansions, singular perturbations, reaction--diffusion systems, boundary--internal and initial layers, stability
Received by editor(s): July 5, 1994
Received by editor(s) in revised form: January 13, 1995
Additional Notes: Research partially supported by NSFgrant DMS9002803 and DMS9205535.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society