Connection coefficients, matchings, maps and

combinatorial conjectures for

Jack symmetric functions

Authors:
I. P. Goulden and D. M. Jackson

Journal:
Trans. Amer. Math. Soc. **348** (1996), 873-892

MSC (1991):
Primary 05E05, 05A15, 57M15

DOI:
https://doi.org/10.1090/S0002-9947-96-01503-6

MathSciNet review:
1325917

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A power series is introduced that is an extension to three sets of variables of the Cauchy sum for Jack symmetric functions in the Jack parameter We conjecture that the coefficients of this series with respect to the power sum basis are nonnegative integer polynomials in , the Jack parameter shifted by . More strongly, we make the * Matchings-Jack Conjecture*, that the coefficients are counting series in for matchings with respect to a parameter of nonbipartiteness. Evidence is presented for these conjectures and they are proved for two infinite families.

The coefficients of a second series, essentially the logarithm of the first, specialize at values and of the Jack parameter to the numbers of hypermaps in orientable and locally orientable surfaces, respectively. We conjecture that these coefficients are also nonnegative integer polynomials in , and we make the *Hypermap-Jack Conjecture*, that the coefficients are counting series in for hypermaps in locally orientable surfaces with respect to a parameter of nonorientability.

**1.**M. Adler and P. van Moerbeke,*Birkhoff strata, Backlund transformations, and regularization of isospectral operators*, Advances in Math.,**108**(1994), 140--204. CMP**95:01****2.**G.E. Andrews, I.P. Goulden and D.M. Jackson,*Generalizations of Cauchy's summation theorem for Schur functions*, Trans. Amer. Math. Soc.,**310**(1988), 805--820. MR**89m:05009****3.**N. Bergeron and A.M. Garsia,*Zonal polynomials and domino tableaux*, Discrete Math.,**99**(1992), 3--15. MR**93e:20006****4.**I.P. Goulden and D.M. Jackson,*``Combinatorial Enumeration'',*Wiley Interscience, New York, 1983. MR**84m:05002****5.**I.P. Goulden and D.M. Jackson,*Combinatorial constructions for integrals over normally distributed random matrices*, Proc. Amer. Math. Soc.,**123**(1995), 995--1003. CMP**95:06****6.**I.P. Goulden and D.M. Jackson,*Maps in locally orientable surfaces, the double coset algebra, and zonal polynomials*, Canadian J. Math. (to appear).**7.**I.P. Goulden and D.M. Jackson,*Symmetric functions and Macdonald's result for top connexion coefficients in the symmetric group*, J. Algebra,**166**(1994), 364--378. CMP**94:13****8.**P.J. Hanlon,*Jack symmetric functions and some combinatorial properties of Young symmetrizers*, J. Combinatorial Theory (A),**47**(1988), 37--70. MR**90e:05008****9.**P.J. Hanlon,*A Markov chain on the symmetric group and Jack symmetric functions*, Discrete Math.,**99**(1992), 123--140. MR**93j:60093****10.**P.J. Hanlon, R.P. Stanley, and J.R. Stembridge,*Some combinatorial aspects of the spectra of normally distributed random matrices*, Contemporary Mathematics,**138**(1992), 151--174. MR**93j:05164****11.**H. Jack,*A class of symmetric polynomials with a parameter*, Proc. Roy. Soc. Edinburgh (A),**69**(1969-70), 1--18. MR**44:6652****12.**D.M. Jackson and T.I. Visentin,*A character theoretic approach to embeddings of rooted maps in an orientable surface of given genus*, Trans. Amer. Math. Soc.,**322**(1990), 343--363. MR**91b:05093****13.**D.M. Jackson and T.I. Visentin,*Character theory and rooted maps in an orientable surface of given genus: face-coloured maps*, Trans. Amer. Math. Soc.,**322**(1990), 365--376. MR**91b:05094****14.**K.J. Kadell,*The Selberg-Jack symmetric functions*, (preprint).**15.**I.G. Macdonald,*``Symmetric functions and Hall polynomials,''*Clarendon Press, Oxford, 1979. MR**84g:05003****16.**I.G. Macdonald,*Commuting differential operators and zonal spherical functions*, in ``Algebraic Groups, Utrecht 1986'' (A.M. Cohen, et al., Editors), Lecture Notes in Math.,**1271**189--200, Springer-Verlag, Berlin, 1987. MR**89e:43025****17.**I.G. Macdonald,*A new class of symmetric functions*, Publ. I.R.M.A. Strasbourg, Actes 20th Seminaire Lotharingien (1988), 131--171.**18.**R.P. Stanley,*Some combinatorial properties of Jack symmetric functions*, Advances in Math.,**77**(1989), 76--115. MR**90g:05020****19.**J.R. Stembridge,*A Maple package for symmetric functions - Version 2*, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, July 1993.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
05E05,
05A15,
57M15

Retrieve articles in all journals with MSC (1991): 05E05, 05A15, 57M15

Additional Information

**I. P. Goulden**

Affiliation:
Department Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Email:
ipgoulden@math.uwaterloo.ca

**D. M. Jackson**

Affiliation:
Department Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Email:
dmjackson@watdragon.uwaterloo.ca

DOI:
https://doi.org/10.1090/S0002-9947-96-01503-6

Received by editor(s):
November 27, 1994

Article copyright:
© Copyright 1996
American Mathematical Society