On the Poles of RankinSelberg Convolutions of Modular Forms
Author:
Xianjin Li
Journal:
Trans. Amer. Math. Soc. 348 (1996), 12131234
MSC (1991):
Primary 11M26, 11F11
MathSciNet review:
1333393
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The RankinSelberg convolution is usually normalized by the multiplication of a zeta factor. One naturally expects that the nonnormalized convolution will have poles where the zeta factor has zeros, and that these poles will have the same order as the zeros of the zeta factor. However, this will only happen if the normalized convolution does not vanish at the zeros of the zeta factor. In this paper, we prove that given any point inside the critical strip, which is not equal to and is not a zero of the Riemann zeta function, there exist infinitely many cusp forms whose normalized convolutions do not vanish at that point.
 [1]
Pierre
Deligne, La conjecture de Weil. I, Inst. Hautes Études
Sci. Publ. Math. 43 (1974), 273–307 (French). MR 0340258
(49 #5013)
 [2]
J.M.
Deshouillers and H.
Iwaniec, Kloosterman sums and Fourier coefficients of cusp
forms, Invent. Math. 70 (1982/83), no. 2,
219–288. MR
684172 (84m:10015), http://dx.doi.org/10.1007/BF01390728
 [3]
J.M.
Deshouillers and H.
Iwaniec, The nonvanishing of RankinSelberg zetafunctions at
special points, The Selberg trace formula and related topics
(Brunswick, Maine, 1984), Contemp. Math., vol. 53, Amer. Math. Soc.,
Providence, RI, 1986, pp. 51–95. MR 853553
(88d:11047), http://dx.doi.org/10.1090/conm/053/853553
 [4]
T.
Estermann, On Kloosterman’s sum, Mathematika
8 (1961), 83–86. MR 0126420
(23 #A3716)
 [5]
Wen
Zhi Luo, On the nonvanishing of RankinSelberg
𝐿functions, Duke Math. J. 69 (1993),
no. 2, 411–425. MR 1203232
(93m:11040), http://dx.doi.org/10.1215/S0012709493069189
 [6]
R.
S. Phillips and P.
Sarnak, On cusp forms for cofinite subgroups of
𝑃𝑆𝐿(2,𝑅), Invent. Math.
80 (1985), no. 2, 339–364. MR 788414
(86m:11037), http://dx.doi.org/10.1007/BF01388610
 [7]
R.
A. Rankin, Contributions to the theory of Ramanujan’s
function 𝜏(𝑛) and similar arithmetical functions. I. The
zeros of the function
∑^{∞}_{𝑛=1}𝜏(𝑛)/𝑛^{𝑠} on
the line ℜ𝔰=13/2. II. The order of the Fourier coefficients of
integral modular forms, Proc. Cambridge Philos. Soc.
35 (1939), 351–372. MR 0000411
(1,69d)
 [8]
Goro
Shimura, On the holomorphy of certain Dirichlet series, Proc.
London Math. Soc. (3) 31 (1975), no. 1, 79–98.
MR
0382176 (52 #3064)
 [9]
Goro
Shimura, Introduction to the arithmetic theory of automorphic
functions, Publications of the Mathematical Society of Japan, No. 11.
Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton,
N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
(47 #3318)
 [10]
E.
C. Titchmarsh, The Theory of the Riemann ZetaFunction,
Oxford, at the Clarendon Press, 1951. MR 0046485
(13,741c)
 [11]
André
Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A.
34 (1948), 204–207. MR 0027006
(10,234e)
 [1]
 P. Deligne, La conjecture de Weil I, Publ. Math. I.H.E.S. 43, 273307 (1974). MR 49:5013
 [2]
 J. M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70, 219288 (1982). MR 84m:10015
 [3]
 J.M. Deshouillers and H. Iwaniec, The nonvanishing of the RankinSelberg zetafunctions at special points, in ``The Selberg Trace Formula and Related Topics,'' Contemp. Math. 53, Amer. Math. Soc., Providence, R. I., 5195 (1986). MR 88d:11047
 [4]
 T. Estermann, On Kloosterman's sums, Mathematika 8, 8386 (1961). MR 23:A3716
 [5]
 W. Luo, On the nonvanishing of RankinSelberg Lfunctions, Duke Math. J. 69, 411425 (1993). MR 93m:11040
 [6]
 R. Phillips and P. Sarnak, On cusp form for cofinite subgroups of , Invent. Math. 80, 339364 (1985). MR 86m:11037
 [7]
 R. A. Rankin, Contributions of the theory of Ramanujan's functions and similar arithmetical functions, Proc. Cambridge Phil. Soc. 35, 357372 (1939). MR 1:69d
 [8]
 G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31, 7998 (1975). MR 52:3064
 [9]
 G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971. MR 47:3318
 [10]
 E. C. Titchmarsh, The Theory of the Riemann ZetaFunction, Oxford, 1950. MR 13:741c
 [11]
 A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. 34, 204207 (1948). MR 10:234e
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
11M26,
11F11
Retrieve articles in all journals
with MSC (1991):
11M26,
11F11
Additional Information
Xianjin Li
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
xianjin@math.purdue.edu
DOI:
http://dx.doi.org/10.1090/S0002994796015401
PII:
S 00029947(96)015401
Keywords:
Poles,
RankinSelberg convolutions,
zeros,
Riemann zeta function,
cusp forms
Received by editor(s):
January 17, 1994
Received by editor(s) in revised form:
April 13, 1995
Article copyright:
© Copyright 1996
American Mathematical Society
