Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

R-torsion and zeta functions for
analytic Anosov flows on 3-manifolds


Author: Héctor Sánchez-Morgado
Journal: Trans. Amer. Math. Soc. 348 (1996), 963-973
MSC (1991): Primary 58F15, 58F20, 58G10
MathSciNet review: 1348868
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We improve previous results relating R-torsion, for an acyclic representation of the fundamental group, with a special value of the torsion zeta function of an analytic Anosov flow on a 3-manifold. By using the new techniques of Rugh and Fried we get rid of the unpleasent assumptions about the regularity of the invariant foliations.


References [Enhancements On Off] (What's this?)

  • 1. David Fried, Fuchsian groups and Reidemeister torsion, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 141–163. MR 853556 (88e:58098), http://dx.doi.org/10.1090/conm/053/853556
  • 2. David Fried, Lefschetz formulas for flows, The Lefschetz centennial conference, Part III (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 19–69. MR 893856 (88k:58138)
  • 3. Fried, D. Meromorphic Zeta Functions for Analytic Flows. Preprint 1993.
  • 4. Nicolai T. A. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 347–360. MR 1062762 (91g:58219), http://dx.doi.org/10.1017/S0143385700005587
  • 5. Ratner, M. Markov decomposition for a Y-flow on a three-dimensional manifold. Math. Notes 6 (1968) 880-886.
  • 6. David Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), no. 2, 239–262. MR 1016871 (91a:58149)
  • 7. Hans H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5 (1992), no. 6, 1237–1263. MR 1192517 (93i:58121)
  • 8. Rugh, H. Generalized Fredholm Determinants and Selberg Zeta Functions for Axiom A Dynamical Systems. To appear in Ergod. Th. and Dynam. Sys.
  • 9. Sánchez-Morgado, H. Lefschetz formulae for Anosov flows on 3-manifolds. Ergod. Th. and Dynam. Sys. 13 (1993) 335-347.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58F15, 58F20, 58G10

Retrieve articles in all journals with MSC (1991): 58F15, 58F20, 58G10


Additional Information

Héctor Sánchez-Morgado
Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria C. P. 04510, México D. F., México
Email: hector@gauss.matem.unam.mx

DOI: http://dx.doi.org/10.1090/S0002-9947-96-01611-X
PII: S 0002-9947(96)01611-X
Keywords: R-torsion, zeta functions, transitive Anosov flows
Received by editor(s): November 18, 1994
Additional Notes: Partially supported by DGAPA-UNAM IN-103792
Article copyright: © Copyright 1996 American Mathematical Society