Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conjugate points and shocks in
nonlinear optimal control


Authors: N. Caroff and H. Frankowska
Journal: Trans. Amer. Math. Soc. 348 (1996), 3133-3153
MSC (1991): Primary 35B37, 35L67, 49K15, 49L05, 49L20
DOI: https://doi.org/10.1090/S0002-9947-96-01577-2
MathSciNet review: 1344204
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate characteristics of the Hamilton-Jacobi-Bellman
equation arising in nonlinear optimal control and their relationship with weak and strong local minima. This leads to an extension of the Jacobi conjugate points theory to the Bolza control problem. Necessary and sufficient optimality conditions for weak and strong local minima are stated in terms of the existence of a solution to a corresponding matrix Riccati differential equation.


References [Enhancements On Off] (What's this?)

  • 1. J.-P. Aubin and A. Cellina (1984) Differential Inclusions, Springer-Verlag, Gründlehren der Math. Wiss. MR 85j:49010
  • 2. J.-P. Aubin and H. Frankowska (1990) Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin. MR 91d:49001
  • 3. V. Barbu and G. Da Prato (1983) Hamilton-Jacobi equations and synthesis of nonlinear control processes in Hilbert space, J. Diff. Eqs., 48, 350-372. MR 84i:49048
  • 4. E. N. Barron and R. Jensen (1990) Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex hamiltonians, Comm. Partial Diff. Eqs., 15, 113-174. MR 91h:35069
  • 5. A. Bensoussan (1988) Perturbation methods in optimal control, Wiley/Gautier-Villars Series in Modern Applied Mathematics, Bordas, Paris and John Wiley & Sons Ltd. MR 89m:93002
  • 6. Ch. Byrnes and H. Frankowska (1992) Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati, Comptes-Rendus de l'Académie des Sciences, t. 315, Série 1, Paris, 427-431. MR 93h:49092
  • 7. Ch. Byrnes and H. Frankowska (submitted) Uniqueness of optimal trajectories and the nonexistence of shocks for Hamilton-Jacobi-Bellman and Riccati partial differential equations.
  • 8. P. Cannarsa and H. Frankowska (1991) Some characterizations of optimal trajectories in control theory, SIAM J. Control and Optimiz., 29, 1322-1347. MR 92j:49025
  • 9. N. Caroff (1994) Caractéristiques de l'équation d'Hamilton-Jacobi et conditions d'optimalité en contrôle optimal non linéaire, Thèse de Doctorat, Université Paris-Dauphine.
  • 10. N. Caroff and H. Frankowska (1992) Optimality and characteristics of Hamilton-Jacobi-Bellman equations, in Proceedings of Premier Colloque Franco-Roumain sur l'Optimisation, Contrôle Optimal, Equations aux Dérivées Partielles, 7-11 Septembre, 1992, International Series of Numerical Mathematics, vol. 107, Birkhäuser Verlag, Basel, 169-180. MR 94g:49071
  • 11. L. Cesari (1993) Optimization Theory and Applications, Springer-Verlag, New-York, Heidelberg, Berlin. MR 85c:49001
  • 12. E. D. Conway and E. Hopf (1964) Hamilton's Theory and Generalized Solutions of the Hamilton-Jacobi Equation, J. Math. Mech., 13, 939-986. MR 32:243
  • 13. M. G. Crandall and P.-L. Lions (1983) Viscosity solutions of Hamilton-Jacobi equations, Transactions of A.M.S., 277, 1-42. MR 85g:35029
  • 14. C. M. Dafermos (1977) Generalized Characteristics and the Structure of Solutions of Hyperbolic Conservation Laws, Indiana University Math. J., 26, 1097-1119. MR 56:16151
  • 15. W. H. Fleming and R. W. Rishel (1975) Deterministic and Stochastic Optimal Control, Springer-Verlag, New York. MR 56:13016
  • 16. H. Frankowska (1989) Contingent cones to reachable sets of control systems, SIAM J. on Control and Optimization, 27, 170-198. MR 89m:49034
  • 17. H. Frankowska (1991) Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, Proceedings of 30th IEEE Conference on Decision and Control, Brighton, GB, December 11-13.
  • 18. H. Frankowska (1993) Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, SIAM J. on Control and Optimization, 31, 257-272. MR 94c:49037
  • 19. M. R. Hestenes (1966) Calculus of Variations and Optimal Control Theory, Wiley. MR 34:3390
  • 20. A. D. Ioffe and V. Tichomirov (1979) Theory of Extremal Problems, North-Holland, Amsterdam, New York, Oxford. MR 80d:49001b
  • 21. E. B. Lee and L. Markus (1967) Foundations of Optimal Control Theory, J. Wiley and Sons. MR 36:3596
  • 22. D. Q. Mayne (1977) Sufficient Conditions for a Control to be a Strong Minimum, J. Opt. Th. Appl., 21, 339-351. MR 56:16486
  • 23. D. Orell and V. Zeidan (1988) Another Jacobi Sufficiency Criterion for Optimal Control with Smooth Constraints, J. Opt. Th. Appl., 58, 283-300. MR 89h:49023
  • 24. Count J. F. Riccati (1724) Animadversationes in aequationes differentiales secundi gradus, Actorum Eruditorum quae Lipsiae Publicantur, Supplementa 8, 66-73.
  • 25. W. T. Reid (1972) Riccati Differential Equations, Academic Press. MR 50:10401
  • 26. J. Smoller (1960) Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Gründlehren der Math. Wiss. MR 95g:35002
  • 27. M. Spivak (1975) A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Boston, Mass. MR 52:15254b
  • 28. V. Zeidan (1983) Sufficient Conditions for the generalized problem of Bolza, Transactions of A.M.S., 275, 561-583. MR 84c:49033
  • 29. V. Zeidan (1984) A Modified Hamilton-Jacobi Approach in the Generalized Problem of Bolza, Appl. Math. Opt., 11, 97-109. MR 85m:49056
  • 30. V. Zeidan (1984) First and Second Order Sufficient Conditions for Optimal Control and the Calculus of Variations, Appl. Math. Opt., 11, 209-226. MR 86c:49034
  • 31. V. Zeidan (1984) Extended Jacobi Sufficiency Criterion for Optimal Control, SIAM J. Control and Optim., 22, 294-300. MR 85f:49035
  • 32. V. Zeidan (1984) Sufficiency Conditions with Minimal Regularity Assumptions, Appl. Math. Opt., 20, 19-31. MR 90d:49016
  • 33. V. Zeidan and P. Zezza (1988) Necessary Conditions for Optimal Control Problems: conjugate points, SIAM J. Control and Optim., 26, 592-608. MR 89h:49015
  • 34. V. Zeidan and P. Zezza (1988) The Conjugate Point Condition for Smooth Control Sets, J. Math. An. Appl., 132, 572-589. MR 89j:49014
  • 35. V. Zeidan and P. Zezza (1989) Coupled Points in the Calculus of Variations and Applications to Periodic Problems, Transactions of A.M.S., 315, 323-335. MR 90b:49037
  • 36. V. Zeidan and P. Zezza (1991) Coupled Points in Optimal Control Theory, IEEE, Transactions on Automatic Control, 36, 1276-1281. MR 92k:49040

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35B37, 35L67, 49K15, 49L05, 49L20

Retrieve articles in all journals with MSC (1991): 35B37, 35L67, 49K15, 49L05, 49L20


Additional Information

N. Caroff
Affiliation: CEREMADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France

H. Frankowska
Affiliation: CEREMADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France

DOI: https://doi.org/10.1090/S0002-9947-96-01577-2
Keywords: Hamilton-Jacobi-Bellman equation, characteristics, conjugate point, necessary and sufficient conditions for optimality, Riccati differential equation, shock, value function, weak local minimum
Received by editor(s): November 8, 1993
Received by editor(s) in revised form: May 8, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society