The automorphism group of a coded system

Authors:
Doris Fiebig and Ulf-Rainer Fiebig

Journal:
Trans. Amer. Math. Soc. **348** (1996), 3173-3191

MSC (1991):
Primary 58F03, 20B27; Secondary 20E26

DOI:
https://doi.org/10.1090/S0002-9947-96-01603-0

MathSciNet review:
1348860

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a general construction of coded systems with an automorphism group isomorphic to where is any preassigned group which has a ``continuous block presentation'' (the isomorphism will map the shift to . Several applications are given. In particular, we obtain automorphism groups of coded systems which are abelian, which are finitely generated and one which contains . We show that any group which occurs as a subgroup of the automorphism group of some subshift with periodic points dense already occurs for some synchronized system.

**[AM]**R. Adler and B. Marcus,*Topological entropy and equivalence of dynamical systems*, Mem. Amer. Math. Soc., no.**219**(1979). MR**83h:28027****[BFK]**M. Boyle, J. Franks and B. Kitchens,*Automorphisms of one-sided subshifts of finite type*, Ergod. Theory Dynamical Systems**10**(1990), 421--449. MR**91h:58037****[BH]**F. Blanchard and G. Hansel,*Systèmes codés*, Theoret. Comput. Sci.**44**(1986), 17--49. MR**88m:68029****[BK]**M. Boyle and W. Krieger,*Periodic points and automorphisms of the shift*, Trans. Amer. Math. Soc.**302**(1987), 125--149. MR**88g:54065****[BLR]**M. Boyle, D. Lind and D. Rudolph,*The automorphism group of a shift of finite type*, Trans. Amer. Math. Soc.**306**(1988), 71--114. MR**89m:54051****[DGS]**M. Denker, C. Grillenberger and K. Sigmund,*Ergodic theory on compact spaces*, Lecture Notes in Math., vol. 527, Springer, New York, 1976. MR**56:15879****[FF]**D. Fiebig and U. Fiebig,*Covers for coded systems*, Symbolic Dynamics and its Application, Contemporary Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 139--180. MR**93m:54068****[H]**G. A. Hedlund,*Endomorphisms and automorphisms of the shift dynamical system*, Math. Systems Theory**3**(1969), 320--375. MR**41:4510****[KRW]**K. H. Kim, F. W. Roush and J. B. Wagoner,*Automorphisms of the dimension group and gyration numbers*, J. Amer. Math. Soc.**5**(1992), 191--212. MR**93h:54026****[LM]**D. Lind and B. Marcus,*An introduction to symbolic dynamics and coding*, Cambridge Univ. Press, (to appear).**[MKS]**W. Magnus, A. Karrass and D. Solitar,*Combinatorial group theory*, Dover, New York, 1976. MR**54:10423****[R]**J. Ryan,*The shift and commutativity*. II, Math. Systems Theory**8**(1974), 249--250. MR**52:4265****[W]**R. Williams,*Classification of subshifts of finite type*, Ann. of Math.**98**(1973), 120--153; Errata**99**(1974), 380--381. MR**48:9769**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F03,
20B27,
20E26

Retrieve articles in all journals with MSC (1991): 58F03, 20B27, 20E26

Additional Information

**Doris Fiebig**

Affiliation:
Institut für Angewandte Mathematik, Universität Heidelberg, im Neuenheimer Feld 294, 69120 Heidelberg, Germany

Email:
Fiebig@math.uni-heidelberg.de

**Ulf-Rainer Fiebig**

Affiliation:
Institut für Angewandte Mathematik, Universität Heidelberg, im Neuenheimer Feld 294, 69120 Heidelberg, Germany

Email:
Fiebig@math.uni-heidelberg.de

DOI:
https://doi.org/10.1090/S0002-9947-96-01603-0

Received by editor(s):
December 13, 1994

Received by editor(s) in revised form:
July 17, 1995

Article copyright:
© Copyright 1996
American Mathematical Society