Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On quadratic forms of height two
and a theorem of Wadsworth


Author: Detlev W. Hoffmann
Journal: Trans. Amer. Math. Soc. 348 (1996), 3267-3281
MSC (1991): Primary 11E04, 11E81, 12F20
DOI: https://doi.org/10.1090/S0002-9947-96-01637-6
MathSciNet review: 1355298
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\varphi $ and $\psi $ be anisotropic quadratic forms over a field $F$ of characteristic not $2$. Their function fields $F(% \varphi )$ and $F(\psi )$ are said to be equivalent (over $F$) if $% \varphi \otimes F(\psi )$ and $\psi \otimes F(% \varphi )$ are isotropic. We consider the case where $\dim % \varphi =2^n$ and $% \varphi $ is divisible by an $(n-2)$-fold Pfister form. We determine those forms $\psi $ for which $% \varphi $ becomes isotropic over $F(\psi )$ if $n\leq 3$, and provide partial results for $n\geq 4$. These results imply that if $F(% \varphi )$ and $F(\psi )$ are equivalent and $\dim % \varphi =\dim \psi$, then $% \varphi $ is similar to $\psi $ over $F$. This together with already known results yields that if $% \varphi $ is of height $2$ and degree $1$ or $2$, and if $\dim % \varphi =\dim \psi$, then $F(% \varphi )$ and $F(\psi )$ are equivalent iff $F(% \varphi )$ and $F(\psi )$ are isomorphic over $F$.


References [Enhancements On Off] (What's this?)

  • 1. J. Kr. Arason and M. Knebusch, Über die Grade quadratischer Formen, Math. Ann. 234 (1978), 167--192. MR 58:21933
  • 2. H. Ahmad and J. Ohm, Function fields of Pfister neighbors, J. Algebra. 178 (1995), 653--664. CMP 1996:4
  • 3. R. Elman and T. Y. Lam, Pfister forms and $K$-theory of fields, J. Algebra 23 (1972), 181--213. MR 46:1882
  • 4. ------, Quadratic forms and the $u$-invariant II, Invent. Math. 21 (1973), 125--137. MR 54:5114
  • 5. R. Elman, T. Y. Lam, and A. R. Wadsworth, Amenable fields and Pfister extensions, Proc. of Quadratic Forms Conference (ed. G. Orzech), Queen's Papers in Pure and Applied Mathematics No. 46 (1977), 445--491. MR 58:27756
  • 6. ------, Function fields of Pfister forms, Invent. Math. 51 (1979), 61--75. MR 80m:10017
  • 7. R. W. Fitzgerald, Quadratic forms of height two, Trans. Amer. Math. Soc. 283 (1984), 339--351. MR 85f:11027
  • 8. D. W. Hoffmann, Function Fields of Quadratic Forms, Ph.D. thesis, University of California, Berkeley, California 1992.
  • 9. ------, Isotropy of $5$-dimensional quadratic forms over the function field of a quadric, Proceedings of the 1992 Santa Barbara Summer Research Institute on Quadratic Forms and Division Algebras, Proc. Symp. Pure Math. 58.2 (1995), 217--225. CMP 1995:11
  • 10. ------, On $6$-dimensional quadratic forms isotropic over the function field of a quadric, Comm. Alg. 22 (1994), 1999--2014. MR 95g:11027
  • 11. ------, Isotropy of quadratic forms over the function field of a quadric, Math. Z. 220 (1995), 461--476. CMP 1996:4
  • 12. D. W. Hoffmann, D. W. Lewis, and J. Van Geel, Minimal forms for function fields of conics, Proceedings of the 1992 Santa Barbara Summer Research Institute on Quadratic Forms and Division Algebras, Proc. Symp. Pure Math. 58.2 (1995), 227--237. CMP 1995:11
  • 13. J. Hurrelbrink and U. Rehmann, Splitting patterns of quadratic forms, Math. Nachr. 176 (1995), 111--127. CMP 1996:4
  • 14. O.T. Izhboldin, On the nonexcellence of field extensions $F(\pi )/F$, preprint (1995).
  • 15. B. Kahn, Formes quadratiques de hauteur et de degré $2$, to appear in: Indag. Math.
  • 16. M. Knebusch, Generic splitting of quadratic forms I, Proc. London Math. Soc. 33 (1976), 65--93. MR 54:230
  • 17. ------, Generic splitting of quadratic forms II, Proc. London Math. Soc. 34 (1977), 1--31. MR 55:379
  • 18. T. Y. Lam, The Algebraic Theory of Quadratic Forms, Reading, Massachusetts: Benjamin 1973 (revised printing 1980). MR 53:277; MR 83d:10022
  • 19. D. Leep, Function field results, handwritten notes taken by T. Y. Lam (1989).
  • 20. P. Mammone and D. B. Shapiro, The Albert quadratic form for an algebra of degree four, Proc. Amer. Math. Soc. 105 (1989), 525--530. MR 89g:16029
  • 21. J. Ohm, The Zariski problem for function fields of quadratic forms, to appear in: Proc. Amer. Math. Soc.
  • 22. W. Scharlau, Quadratic and Hermitian Forms, Berlin, Heidelberg, New York, Tokyo: Springer 1985. MR 86k:11022
  • 23. A. R. Wadsworth, Similarity of quadratic forms and isomorphism of their function fields, Trans. Amer. Math. Soc. 208 (1975), 352--358. MR 51:12702

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11E04, 11E81, 12F20

Retrieve articles in all journals with MSC (1991): 11E04, 11E81, 12F20


Additional Information

Detlev W. Hoffmann
Affiliation: Aindorferstr. 84, D-80689 Munich, Germany
Address at time of publication: Laboratoire de Mathématiques, Faculté des Sciences, Université de Franche-Comté, 25030 Besançon Cedex, France
Email: detlev@math.univ-fcomte.fr

DOI: https://doi.org/10.1090/S0002-9947-96-01637-6
Keywords: Quadratic forms of height 2, function fields of quadratic forms, equivalence of function fields, isomorphism of function fields
Received by editor(s): December 2, 1994
Received by editor(s) in revised form: October 16, 1995
Additional Notes: This research has been carried out during the author’s stay at the Department of Mathematics at the University of Kentucky, Lexington, Kentucky, during the academic year 1994/95.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society