Optimal natural dualities. II: General theory
Authors:
B. A. Davey and H. A. Priestley
Journal:
Trans. Amer. Math. Soc. 348 (1996), 36733711
MSC (1991):
Primary 08B99, 06D15, 06D05, 18A40
MathSciNet review:
1348858
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A general theory of optimal natural dualities is presented, built on the test algebra technique introduced in an earlier paper. Given that a set of finitary algebraic relations yields a duality on a class of algebras , those subsets of which yield optimal dualities are characterised. Further, the manner in which the relations in are constructed from those in is revealed in the important special case that generates a congruencedistributive variety and is such that each of its subalgebras is subdirectly irreducible. These results are obtained by studying a certain algebraic closure operator, called entailment, definable on any set of algebraic relations on . Applied, by way of illustration, to the variety of Kleene algebras and to the proper subvarieties of pseudocomplemented distributive lattices, the theory improves upon and illuminates previous results.
 1.
David
M. Clark and Brian
A. Davey, The quest for strong dualities, J. Austral. Math.
Soc. Ser. A 58 (1995), no. 2, 248–280. MR 1323996
(96d:08010)
 2.
D.M. Clark and B.A. Davey, Natural dualities for the working algebraist, in preparation, Cambridge University Press.
 3.
D.M. Clark and B.A. Davey, When is a natural duality `good'?, Algebra Universalis (to appear).
 4.
Brian
A. Davey, Duality theory on ten dollars a day, Algebras and
orders (Montreal, PQ, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
vol. 389, Kluwer Acad. Publ., Dordrecht, 1993, pp. 71–111.
MR
1233789 (94m:08001)
 5.
B.A. Davey, M. Haviar and H.A. Priestley, The syntax and semantics of entailment in duality theory, J. Symbolic Logic (to appear).
 6.
B.
A. Davey and H.
A. Priestley, Generalised piggyback dualities and applications to
Ockham algebras, Houston J. Math. 13 (1987),
no. 2, 151–198. MR 904949
(89f:06021)
 7.
B.
A. Davey and H.
A. Priestley, Introduction to lattices and order, Cambridge
Mathematical Textbooks, Cambridge University Press, Cambridge, 1990. MR 1058437
(91h:06001)
 8.
B.
A. Davey and H.
A. Priestley, Partitioninduced natural dualities for varieties of
pseudocomplemented distributive lattices, Discrete Math.
113 (1993), no. 13, 41–58. MR 1212869
(94i:06011), http://dx.doi.org/10.1016/0012365X(93)90507P
 9.
B.
A. Davey and H.
A. Priestley, Optimal natural dualities, Trans. Amer. Math. Soc. 338 (1993), no. 2, 655–677. MR 1169079
(93j:06011), http://dx.doi.org/10.1090/S00029947199311690797
 10.
B.A. Davey and H.A. Priestley, Optimal natural dualities III: a miscellany of examples, in preparation.
 11.
B.
A. Davey and H.
Werner, Dualities and equivalences for varieties of algebras,
Contributions to lattice theory (Szeged, 1980) Colloq. Math. Soc.
János Bolyai, vol. 33, NorthHolland, Amsterdam, 1983,
pp. 101–275. MR 724265
(85c:08012)
 12.
L.
Szabó and Á.
Szendrei (eds.), Lectures in universal algebra, Colloquia
Mathematica Societatis János Bolyai, vol. 43, NorthHolland
Publishing Co., Amsterdam; János Bolyai Mathematical Society,
Budapest, 1986. Papers from the colloquium on universal algebra held at the
József Attila University, Szeged, August 26–30, 1983. MR 860251
(87i:08001)
 13.
B.
A. Davey and H.
Werner, PiggybackDualitäten, Bull. Austral. Math. Soc.
32 (1985), no. 1, 1–32 (German, with English
summary). MR
811285 (87d:08002), http://dx.doi.org/10.1017/S0004972700009680
 14.
Bjarni
Jónsson, Algebras whose congruence lattices are
distributive, Math. Scand. 21 (1967), 110–121
(1968). MR
0237402 (38 #5689)
 15.
Alfred
L. Foster and Alden
F. Pixley, Semicategorical algebras. II, Math. Z.
85 (1964), 169–184. MR 0168509
(29 #5771)
 16.
H.A.Priestley, Natural dualities, Lattice theory and its applicationsa volume in honor of Garrett Birkhoff's 80th Birthday, (K.A. Baker and R. Wille, eds.), Heldermann Verlag, 1995.
 17.
H.A. Priestley and M.P. Ward, A multipurpose backtracking algorithm, J. Symbolic Computation 18 (1994), 140. CMP 1995:3
 1.
 D.M. Clark and B.A. Davey, The quest for strong dualities, J. Austral. Math. Soc. (Series A) 58 (1995), 248280. MR 96d:08010
 2.
 D.M. Clark and B.A. Davey, Natural dualities for the working algebraist, in preparation, Cambridge University Press.
 3.
 D.M. Clark and B.A. Davey, When is a natural duality `good'?, Algebra Universalis (to appear).
 4.
 B.A. Davey, Duality theory on ten dollars a day, Algebras and Orders, (I.G. Rosenberg and G. Sabidussi, eds.), NATO Advanced Study Institute Series, Series C, Vol. 389, Kluwer Academic Publishers, 1993, pp. 71111. MR 94m:08001
 5.
 B.A. Davey, M. Haviar and H.A. Priestley, The syntax and semantics of entailment in duality theory, J. Symbolic Logic (to appear).
 6.
 B.A. Davey and H.A. Priestley, Generalized piggyback dualities and applications to Ockham algebras, Houston Math. J. 13 (1987), 151197. MR 89f:06021
 7.
 B.A. Davey and H.A. Priestley, Introduction to lattices and order, Cambridge University Press, 1990. MR 91h:06001
 8.
 B.A. Davey and H.A. Priestley, Partitioninduced natural dualities for varieties of pseudocomplemented distributive lattices, Discrete Math. 113 (1993), 4158. MR 94i:06011
 9.
 B.A. Davey and H.A. Priestley, Optimal natural dualities, Trans. Amer. Math. Soc. 338 (1993), 655677. MR 93j:06011
 10.
 B.A. Davey and H.A. Priestley, Optimal natural dualities III: a miscellany of examples, in preparation.
 11.
 B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Contributions to lattice theory (Szeged, 1980), (A.P. Huhn and E.T. Schmidt, eds.), Colloq. Math. Soc. János Bolyai, Vol. 33, NorthHolland, Amsterdam, 1983, pp. 101275. MR 85c:08012
 12.
 B.A. Davey and H. Werner, Piggyback dualities, Lectures in Universal Algebra (Szeged, 1983), (L. Szabó and A. Szendrei, eds.), Coll. Math. Soc. János Bolyai, Vol. 43, NorthHolland, Amsterdam, vol. 43, 1986, pp. 6183. MR 87i:08001
 13.
 B.A. Davey and H. Werner, Piggybackdualitäten, Bull. Austral. Math. Soc. 32 (1985), 132. MR 87d:08002
 14.
 B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110121. MR 38:5689
 15.
 A.F. Pixley, Semicategorical algebras II, Math. Z. 85 (1964), 169184. MR 29:5771
 16.
 H.A.Priestley, Natural dualities, Lattice theory and its applicationsa volume in honor of Garrett Birkhoff's 80th Birthday, (K.A. Baker and R. Wille, eds.), Heldermann Verlag, 1995.
 17.
 H.A. Priestley and M.P. Ward, A multipurpose backtracking algorithm, J. Symbolic Computation 18 (1994), 140. CMP 1995:3
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
08B99,
06D15,
06D05,
18A40
Retrieve articles in all journals
with MSC (1991):
08B99,
06D15,
06D05,
18A40
Additional Information
B. A. Davey
Affiliation:
Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia
Email:
B.Davey@latrobe.edu.au
H. A. Priestley
Affiliation:
Mathematical Institute, 24/29 St. Giles, Oxford OX1 3LB, England
Email:
hap@maths.ox.ac.uk
DOI:
http://dx.doi.org/10.1090/S0002994796016017
PII:
S 00029947(96)016017
Keywords:
Natural duality,
optimal duality
Received by editor(s):
August 7, 1994
Received by editor(s) in revised form:
August 29, 1995
Article copyright:
© Copyright 1996
American Mathematical Society
