Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Infinite products of finite simple groups


Authors: Jan Saxl, Saharon Shelah and Simon Thomas
Journal: Trans. Amer. Math. Soc. 348 (1996), 4611-4641
MSC (1991): Primary 20E15, 20A15; Secondary 03E35, 20D06, 20E08
DOI: https://doi.org/10.1090/S0002-9947-96-01746-1
MathSciNet review: 1376555
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the sequences $\langle S_{n} \mid n \in \mathbb {N} \rangle $ of finite simple nonabelian groups such that $\prod $$_{n}$ $ S_{n}$ has uncountable cofinality.


References [Enhancements On Off] (What's this?)

  • [Ba] Hyman Bass, Some remarks on group actions on trees, Comm. Algebra 4 (1976), no. 12, 1091–1126. MR 0419616, https://doi.org/10.1080/00927877608822154
  • [Br] J. L. Brenner, Covering theorems for FINASIGs. VIII. Almost all conjugacy classes in \cal𝐴_{𝑛} have exponent ≤4, J. Austral. Math. Soc. Ser. A 25 (1978), no. 2, 210–214. MR 0480718
  • [Ca1] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
  • [Ca2] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
  • [H] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741
  • [J] T. Jech, Multiple forcing, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986. MR 895139
  • [Ko] Sabine Koppelberg, Boolean algebras as unions of chains of subalgebras, Algebra Universalis 7 (1977), no. 2, 195–203. MR 0434914, https://doi.org/10.1007/BF02485429
  • [KT] S. Koppelberg and J. Tits, Une propriété des produits directs infinis groupes finis isomorphes, C. R. Acad. Sci. Paris Sér. A 279 (1974), 583--585.
  • [Ku] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
  • [MN] H. D. Macpherson and Peter M. Neumann, Subgroups of infinite symmetric groups, J. London Math. Soc. (2) 42 (1990), no. 1, 64–84. MR 1078175, https://doi.org/10.1112/jlms/s2-42.1.64
  • [MSW] Stephen P. Humphries, On reducible braids and composite braids, Glasgow Math. J. 36 (1994), no. 2, 197–199. MR 1279892, https://doi.org/10.1017/S0017089500030731
  • [Se] Afzal Beg, On 𝐿𝐶-, 𝑅𝐶-, and 𝐶-loops, Kyungpook Math. J. 20 (1980), no. 2, 211–215. MR 607061
  • [Sm] Charles Small, Arithmetic of finite fields, Monographs and Textbooks in Pure and Applied Mathematics, vol. 148, Marcel Dekker, Inc., New York, 1991. MR 1186215
  • [ST1] J. D. Sharp and S. Thomas, Uniformisation problems and the cofinality of the infinite symmetric group, Notre Dame Journal of Formal Logic 35 (1994), 328--345. CMP 1995:11
  • [ST2] J. D. Sharp and S. Thomas, Unbounded families and the cofinality of the infinite symmetric group, Arch. Math. Logic 34 (1995), 33--45. CMP 1995:11
  • [Sh-b] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • [Sh-326] Saharon Shelah, Vive la différence. I. Nonisomorphism of ultrapowers of countable models, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 357–405. MR 1233826, https://doi.org/10.1007/978-1-4613-9754-0_20
  • [Ta] Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
  • [Th] S. Thomas, The cofinalities of the infinite dimensional classical groups, J. Algebra 179 (1996), 704--719. CMP 1996:7
  • [Ze] D. Zelinsky, Every linear transformation is a sum of non-singular ones, Proc. Amer. Math. Soc 5 (1954), 627--630. MR 16:8c
  • [Zs] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math 3 (1892), 265--284.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20E15, 20A15, 03E35, 20D06, 20E08

Retrieve articles in all journals with MSC (1991): 20E15, 20A15, 03E35, 20D06, 20E08


Additional Information

Jan Saxl
Affiliation: Department of Pure Mathematics and Mathematical Statistics, Cambridge University, 16 Mill Lane, Cambridge CB2 1SB, England
Email: j.saxl@pmms.cam.ac.uk

Saharon Shelah
Affiliation: Department of Mathematics, The Hebrew University, Jerusalem, Israel
Address at time of publication: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
Email: shelah@sunset.ma.huji.ac.il

Simon Thomas
Affiliation: Department of Mathematics, Bilkent University, Ankara, Turkey
Address at time of publication: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
Email: sthomas@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01746-1
Received by editor(s): September 21, 1995
Additional Notes: The research of the second author was partially supported by the U.S.-Israel Binational Science Foundation. This paper is number 584 in the cumulative list of the second author’s publications.
The research of the third author was partially supported by NSF Grants.
Article copyright: © Copyright 1996 American Mathematical Society