Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces


Authors: M. Lemanczyk, F. Parreau and D. Volný
Journal: Trans. Amer. Math. Soc. 348 (1996), 4919-4938
MSC (1991): Primary 28D05, 47A10
DOI: https://doi.org/10.1090/S0002-9947-96-01799-0
MathSciNet review: 1389783
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an irrational rotation, in the space of real bounded variation functions it is proved that there are ergodic cocycles whose small perturbations remain ergodic; in fact, the set of ergodic cocycles has nonempty dense interior.

Given a pseudo-homogeneous Banach space and an irrational rotation, we study the set of elements satisfying the mean ergodic theorem. Once such a space is not homogeneous, we prove it is not reflexive and not separable. In ``natural" cases, up to $L^1$-cohomology, the only elements satisfying the mean ergodic theorem are those from the closure of trigonometric polynomials.

For pseudo-homogeneous spaces admitting a Koksma's inequality ergodicity of the corresponding cylinder flows can be deduced from spectral properties of some circle extensions. In particular this is the case of Lebesgue spectrum (in the orthocomplement of the space of eigenfunctions) for the circle extension.


References [Enhancements On Off] (What's this?)

  • 1. J. Aaronson, M. Lema\'{n}czyk, Ch. Mauduit, H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, Algorithms, Fractals, and Dynamics, Plenum Press, 1995, 27-50.
  • 2. J. Aaronson, M. Lema\'{n}czyk, D. Volný, A salad of cocycles, preprint.
  • 3. I.P. Cornfeld, S.W. Fomin, J.G. Sinai, Ergodic Theory , Springer-Verlag 1982. MR 87f:28019
  • 4. P. Gabriel, M. Lema\'{n}czyk, K. Schmidt, Extensions of cocycles for hyperfinite actions, and applications, to appear in Monatshefte Math.
  • 5. H. Helson, Cocycles on the circle , J. Operator Th. 16 (1986), 189-199. MR 88f:22020
  • 6. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. IHES 49 (1979), 5-234. MR 81h:58039
  • 7. A. Iwanik, M. Lema\'{n}czyk, D. Rudolph, Absolutely continuous cocycles over irrational rotations, Isr. J. Math. 83 (1993), 73-95. MR 94i:58108
  • 8. A.B. Katok, Constructions in Ergodic Theory , unpublished lecture notes.
  • 9. Y. Katznelson, An Introduction to Harmonic Analysis, Dover, New York 1976. MR 54:10976
  • 10. A.W. Ko$\check {\mbox {c}}$ergin, On the homology of functions over dynamical systems, Dokl. AN SSSR 231 (1976). MR 55:3218
  • 11. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974. MR 54:7415
  • 12. J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131. MR 94a:28033
  • 13. M. Lema\'{n}czyk, Ch. Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. 49 (1994), 124-132. MR 94m:28028
  • 14. P. Liardet, D. Volný, Sums of continuous and differentiable functions in dynamical systems, preprint.
  • 15. M. Lin, B. Sine, Ergodic theory and the functional equation $(I-T)x=y$, J. Operator Theory 10 (1983), 153-166. MR 84m:47015
  • 16. C. C. Moore, K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. MR 82a:22007
  • 17. M. G. Nerurkar, On the construction of smooth ergodic skew products, Erg. Th. Dyn. Syst. 8 (1988), 311-326. MR 89m:58123
  • 18. I. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Isr. J. Math. 44 (1983), 127-138. MR 84i:10055
  • 19. D.A. Pask, Skew products over the irrational rotation , Israel J. Math 69 (1990), 65-74. MR 91d:28036
  • 20. D.A. Pask, Ergodicity of certain cylinder flows , Israel J. Math 76 (1991), 129-152. MR 94a:28034
  • 21. K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983. MR 87i:28002
  • 22. M. Rychlik, The Wiener lemma and cocycles , Proc. Amer. Math. Soc. 104 (1988), 932-933. MR 90a:28028
  • 23. K. Schmidt, Cocycles of Ergodic Transformation Groups, Lect. Notes in Math., Vol. 1,
    Macmillan Co. of India, 1977. MR 58:28262
  • 24. M. Talagrand, Some functions with a unique invariant mean, Proc. Amer. Math. Soc. 82 (1981), 255-256. MR 83a:28013
  • 25. W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod $2$ , Trans. Amer. Math. Soc. 140 (1969), 1-35. MR 39:1410
  • 26. D. Volný, Cohomology of Lipschitz and absolutely continuous functions for the circle rotation, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 28D05, 47A10

Retrieve articles in all journals with MSC (1991): 28D05, 47A10


Additional Information

M. Lemanczyk
Affiliation: Department of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Email: mlem@mat.uni.torun.pl

F. Parreau
Affiliation: Laboratoire d’Analyse, Géométrie et Applications, URA CNRS 742, Université Paris-Nord, Av. J.-B. Clément, 93430 Villetaneuse, France
Email: parreau@math.univ-paris13.fr

D. Volný
Affiliation: Mathematical Institute, Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic
Email: dvolny@karlin.mff.cuni.cz

DOI: https://doi.org/10.1090/S0002-9947-96-01799-0
Received by editor(s): July 3, 1995
Additional Notes: Research of the first author was partially supported by KBN grant 2 P301 031 07 (1994)
Research of the third author was supported by grant GAUK 368 of Charles University
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society