Extremal properties of Rademacher functions

with applications to the Khintchine

and Rosenthal inequalities

Authors:
T. Figiel, P. Hitczenko, W. B. Johnson, G. Schechtman and J. Zinn

Journal:
Trans. Amer. Math. Soc. **349** (1997), 997-1027

MSC (1991):
Primary 60E15, 60G50; Secondary 26D07, 46E30

MathSciNet review:
1390980

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The best constant and the extreme cases in an inequality of H.P. Rosenthal, relating the moment of a sum of independent symmetric random variables to that of the and moments of the individual variables, are computed in the range . This complements the work of Utev who has done the same for . The qualitative nature of the extreme cases turns out to be different for than for . The method developed yields results in some more general and other related moment inequalities.

**[E1]**Morris L. Eaton,*A note on symmetric Bernoulli random variables*, Ann. Math. Statist.**41**(1970), 1223–1226. MR**0268930****[E2]**M. R. Eaton,*A probability inequality for linear combinations of bounded random variables*, Ann. Statist.**2**(1974), 609-613.**[H]**Uffe Haagerup,*The best constants in the Khintchine inequality*, Studia Math.**70**(1981), no. 3, 231–283 (1982). MR**654838****[JSZ]**W. B. Johnson, G. Schechtman, and J. Zinn,*Best constants in moment inequalities for linear combinations of independent and exchangeable random variables*, Ann. Probab.**13**(1985), no. 1, 234–253. MR**770640****[K]**Ryszard Komorowski,*On the best possible constants in the Khintchine inequality for 𝑝≥3*, Bull. London Math. Soc.**20**(1988), no. 1, 73–75. MR**916079**, 10.1112/blms/20.1.73**[KS]**Stanisław Kwapień and Jerzy Szulga,*Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces*, Ann. Probab.**19**(1991), no. 1, 369–379. MR**1085342****[MO]**Albert W. Marshall and Ingram Olkin,*Inequalities: theory of majorization and its applications*, Mathematics in Science and Engineering, vol. 143, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR**552278****[Pe]**V. V. Petrov,*Sums of independent random variables*, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. MR**0388499****[Ph]**Robert R. Phelps,*Lectures on Choquet’s theorem*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0193470****[P]**Iosif Pinelis,*Extremal probabilistic problems and Hotelling’s 𝑇² test under a symmetry condition*, Ann. Statist.**22**(1994), no. 1, 357–368. MR**1272088**, 10.1214/aos/1176325373**[PU]**I. F. Pinelis and S. A. Utev,*Estimates of moments of sums of independent random variables*, Teor. Veroyatnost. i Primenen.**29**(1984), no. 3, 554–557 (Russian). MR**761144****[R]**Haskell P. Rosenthal,*On the subspaces of 𝐿^{𝑝} (𝑝>2) spanned by sequences of independent random variables*, Israel J. Math.**8**(1970), 273–303. MR**0271721****[S]**S. B. Stečkin,*On best lacunary systems of functions*, Izv. Akad. Nauk SSSR Ser. Mat.**25**(1961), 357–366 (Russian). MR**0131097****[Sz]**S. J. Szarek,*On the best constants in the Khinchin inequality*, Studia Math.**58**(1976), no. 2, 197–208. MR**0430667****[T]**Michel Talagrand,*Isoperimetry and integrability of the sum of independent Banach-space valued random variables*, Ann. Probab.**17**(1989), no. 4, 1546–1570. MR**1048946****[U1]**S. A. Utev,*Extremal problems in moment inequalities*, Limit theorems of probability theory, Trudy Inst. Mat., vol. 5, “Nauka” Sibirsk. Otdel., Novosibirsk, 1985, pp. 56–75, 175 (Russian). MR**821753****[U2]**S. A. Utev,*Extremal problems in moment inequalities*, Limit Theorems in Probability Theory, Trudy Inst. Math., Novosibirsk, 1985, pp. 56-75 (in Russian).**[W]**P. Whittle,*Bounds for the moments of linear and quadratic forms in independent variables*, Teor. Verojatnost. i Primenen.**5**(1960), 331–335 (English, with Russian summary). MR**0133849****[Y]**R. M. G. Young,*On the best possible constants in the Khintchine inequality*, J. London Math. Soc. (2)**14**(1976), no. 3, 496–504. MR**0438089**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
60E15,
60G50,
26D07,
46E30

Retrieve articles in all journals with MSC (1991): 60E15, 60G50, 26D07, 46E30

Additional Information

**T. Figiel**

Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ul. Abrahama 18, 81–825 Sopot, Poland

Email:
T.Figiel@IMPAN.Gda.pl

**P. Hitczenko**

Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695–8205

Email:
pawel@math.ncsu.edu

**W. B. Johnson**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
johnson@math.tamu.edu

**G. Schechtman**

Affiliation:
Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Email:
mtschech@weizmann.weizmann.ac.il

**J. Zinn**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
jzinn@plevy.math.tamu.edu

DOI:
https://doi.org/10.1090/S0002-9947-97-01789-3

Keywords:
Khintchine inequality,
Rosenthal inequality,
Orlicz function,
extremal problem,
Rademacher functions

Received by editor(s):
December 22, 1994

Additional Notes:
The first, second and fourth authors were participants in the NSF Workshop in Linear Analysis & Probability, Texas A&M University

Professors Hitczenko, Johnson, and Zinn were supported in part by NSF grants

Johnson, Schechtman and Zinn were supported in part by US–Israel Binational Science Foundation

Article copyright:
© Copyright 1997
American Mathematical Society