Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Singular set of some Kähler orbifolds


Author: Thalia D. Jeffres
Journal: Trans. Amer. Math. Soc. 349 (1997), 1961-1971
MSC (1991): Primary 53C55; Secondary 14J17
MathSciNet review: 1389780
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider some examples of orbifolds with positive first Chern class. Applying a result of Ding and Tian, we show that the singularities must be very mild if the orbifold admits a Kähler-Einstein metric.


References [Enhancements On Off] (What's this?)

  • [BK] D. Bättig and H. Knörrer, ``Singularitäten'', Birkhäuser, 1991.
  • [BPV] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • [DT] Wei Yue Ding and Gang Tian, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), no. 2, 315–335. MR 1185586, 10.1007/BF01231335
  • [F] Akito Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, vol. 1314, Springer-Verlag, Berlin, 1988. MR 947341
  • [MM] Toshiki Mabuchi and Shigeru Mukai, Stability and Einstein-Kähler metric of a quartic del Pezzo surface, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 133–160. MR 1215285
  • [T] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, 10.1007/BF01231499

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C55, 14J17

Retrieve articles in all journals with MSC (1991): 53C55, 14J17


Additional Information

Thalia D. Jeffres
Affiliation: Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651
Address at time of publication: Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875
Email: tjeffres@math.uci.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-97-01796-0
Received by editor(s): November 6, 1995
Article copyright: © Copyright 1997 American Mathematical Society