Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Singular set of some Kähler orbifolds


Author: Thalia D. Jeffres
Journal: Trans. Amer. Math. Soc. 349 (1997), 1961-1971
MSC (1991): Primary 53C55; Secondary 14J17
DOI: https://doi.org/10.1090/S0002-9947-97-01796-0
MathSciNet review: 1389780
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider some examples of orbifolds with positive first Chern class. Applying a result of Ding and Tian, we show that the singularities must be very mild if the orbifold admits a Kähler-Einstein metric.


References [Enhancements On Off] (What's this?)

  • [BK] D. Bättig and H. Knörrer, ``Singularitäten'', Birkhäuser, 1991.
  • [BPV] W. Barth, C. Peters, and A. van de Ven, Compact Complex Surfaces, Springer-Verlag, 1984. MR 86c:32026
  • [DT] W. Ding and G. Tian, Kaehler-Einstein metrics and the generalized Futaki invariant, Invent Math. 110 (1992), 315-335. MR 93m:53039
  • [F] A. Futaki, Kaehler-Einstein metrics and integral invariants, Lecture Notes in Math., vol. 13, 14, Springer-Verlag, 1988. MR 90a:53053
  • [MM] T. Mabuchi and S. Mukai, Stability and Einstein-Kaehler metric of a quartic del Pezzo surface, Einstein Metrics and Yang-Mills Connections (Proc. 27th Taniguchi Internat. Sympos., Savda, 1990; T. Mabuchi and S. Mukai, editors), Lecture Notes in Pure Appl. Math., vol. 145, Marcel Dekker, New York, 1993, pp. 133-160. MR 94m:32043
  • [T] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent Math. 101 (1991), 101-172. MR 91d:32042

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C55, 14J17

Retrieve articles in all journals with MSC (1991): 53C55, 14J17


Additional Information

Thalia D. Jeffres
Affiliation: Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651
Address at time of publication: Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875
Email: tjeffres@math.uci.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01796-0
Received by editor(s): November 6, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society