Correlation dimension for iterated function systems
Authors:
Wai Chin, Brian Hunt and James A. Yorke
Journal:
Trans. Amer. Math. Soc. 349 (1997), 17831796
MSC (1991):
Primary 28D20, 28D05; Secondary 60G18
MathSciNet review:
1407698
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The correlation dimension of an attractor is a fundamental dynamical invariant that can be computed from a time series. We show that the correlation dimension of the attractor of a class of iterated function systems in is typically uniquely determined by the contraction rates of the maps which make up the system. When the contraction rates are uniform in each direction, our results imply that for a corresponding class of deterministic systems the information dimension of the attractor is typically equal to its Lyapunov dimension, as conjected by Kaplan and Yorke.
 [AY]
J.
C. Alexander and J.
A. Yorke, Fat baker’s transformations, Ergodic Theory
Dynam. Systems 4 (1984), no. 1, 1–23. MR 758890
(86c:58090), http://dx.doi.org/10.1017/S0143385700002236
 [BR]
Rufus
Bowen and David
Ruelle, The ergodic theory of Axiom A flows, Invent. Math.
29 (1975), no. 3, 181–202. MR 0380889
(52 #1786)
 [DGOSY]
Ming
Zhou Ding, Celso
Grebogi, Edward
Ott, Tim
Sauer, and James
A. Yorke, Estimating correlation dimension from a chaotic time
series: when does plateau onset occur?, Phys. D 69
(1993), no. 34, 404–424. MR 1251269
(94g:58136), http://dx.doi.org/10.1016/01672789(93)901038
 [F1]
K.
J. Falconer, The Hausdorff dimension of selfaffine fractals,
Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2,
339–350. MR
923687 (89h:28010), http://dx.doi.org/10.1017/S0305004100064926
 [F2]
Kenneth
Falconer, Fractal geometry, John Wiley & Sons, Ltd.,
Chichester, 1990. Mathematical foundations and applications. MR 1102677
(92j:28008)
 [F3]
K.
J. Falconer, The dimension of selfaffine fractals. II, Math.
Proc. Cambridge Philos. Soc. 111 (1992), no. 1,
169–179. MR 1131488
(92m:28010), http://dx.doi.org/10.1017/S0305004100075253
 [FOY]
J.
Doyne Farmer, Edward
Ott, and James
A. Yorke, The dimension of chaotic attractors, Phys. D
7 (1983), no. 13, 153–180. MR 719051
(84m:58022), http://dx.doi.org/10.1016/01672789(83)901252
 [G]
Peter
Grassberger, Generalized dimensions of strange attractors,
Phys. Lett. A 97 (1983), no. 6, 227–230. MR 718442
(84i:58075), http://dx.doi.org/10.1016/03759601(83)907533
 [GH]
J.
S. Geronimo and D.
P. Hardin, An exact formula for the measure dimensions associated
with a class of piecewise linear maps, Constr. Approx.
5 (1989), no. 1, 89–98. Fractal approximation.
MR 982726
(90d:58076), http://dx.doi.org/10.1007/BF01889600
 [GP]
Peter
Grassberger and Itamar
Procaccia, Measuring the strangeness of strange attractors,
Phys. D 9 (1983), no. 12, 189–208. MR 732572
(85i:58071), http://dx.doi.org/10.1016/01672789(83)902981
 [HP]
H.
G. E. Hentschel and Itamar
Procaccia, The infinite number of generalized dimensions of
fractals and strange attractors, Phys. D 8 (1983),
no. 3, 435–444. MR 719636
(85a:58064), http://dx.doi.org/10.1016/01672789(83)90235X
 [KY]
James
L. Kaplan and James
A. Yorke, Chaotic behavior of multidimensional difference
equations, Functional differential equations and approximation of
fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978)
Lecture Notes in Math., vol. 730, Springer, Berlin, 1979,
pp. 204–227. MR 547989
(80k:58074)
 [P]
Ya.
B. Pesin, On rigorous mathematical definitions of correlation
dimension and generalized spectrum for dimensions, J. Statist. Phys.
71 (1993), no. 34, 529–547. MR 1219021
(94d:28008), http://dx.doi.org/10.1007/BF01058436
 [PW]
Y. Pesin and H. Weiss, On the dimension of a general class of deterministic and random Cantorlike sets in , symbolic dynamics, and the EckmannRuelle conjecture, to appear in Comm. Math. Physics.
 [PoW]
Mark
Pollicott and Howard
Weiss, The dimensions of some selfaffine limit sets in the plane
and hyperbolic sets, J. Statist. Phys. 77 (1994),
no. 34, 841–866. MR 1301464
(95h:58083), http://dx.doi.org/10.1007/BF02179463
 [R]
A.
Rényi, Probability theory, NorthHolland Publishing
Co., AmsterdamLondon; American Elsevier Publishing Co., Inc., New York,
1970. Translated by László Vekerdi; NorthHolland Series in
Applied Mathematics and Mechanics, Vol. 10. MR 0315747
(47 #4296)
 [Ru]
David
Ruelle, Zetafunctions for expanding maps and Anosov flows,
Invent. Math. 34 (1976), no. 3, 231–242. MR 0420720
(54 #8732)
 [S1]
Károly
Simon, Hausdorff dimension for noninvertible maps, Ergodic
Theory Dynam. Systems 13 (1993), no. 1,
199–212. MR 1213088
(94c:58146), http://dx.doi.org/10.1017/S014338570000729X
 [S2]
Overlapping cylinders: the size of dynamically defined Cantorset, in Ergodic Theory of Z actions, London Math. Soc. Lecture Notes 228, Cambridge Univ. Press, 1996.
 [SY]
T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions? to appear in Ergod. Th. & Dynam. Sys.
 [Y]
Lai
Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic
Theory Dynamical Systems 2 (1982), no. 1,
109–124. MR
684248 (84h:58087)
 [AY]
 J. C. Alexander and J. A. Yorke, Fat baker's transformations, Ergod. Th. & Dynam. Sys. 4 (1984), 123. MR 86c:58090
 [BR]
 R. Bowen and D. Ruelle, The ergodic theory of AxiomA flows, Invent. Math. 29 (1975), 181202. MR 52:1786
 [DGOSY]
 M. Ding, C. Grebogi, E. Ott, T. Sauer, and J. A. Yorke, Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Physica D 69 (1993), 404424. MR 94g:58136
 [F1]
 K. J. Falconer, The Hausdorff dimension of selfaffine fractals, Math. Proc. Camb. Phil. Soc. 103 (1988), 339350. MR 89h:28010
 [F2]
 K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, 1990. MR 92j:28008
 [F3]
 K. J. Falconer, The dimension of selfaffine fractals II, Math. Proc. Camb. Phil. Soc. 111 (1992), 169179. MR 92m:28010
 [FOY]
 J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica D 7 (1983), 153180. MR 84m:58022
 [G]
 P. Grassberger, Generalized dimensions of strange attractors, Physics Letters A 97 (1983) 227. MR 84i:58075
 [GH]
 J. S. Geronimo and D. P. Hardin, An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constructive Approximation 5 (1989), 8998. MR 90d:58076
 [GP]
 P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50 (1983) 346; Measuring the strangeness of strange attractors, Physica D 9 (1983) 189. MR 85i:58071
 [HP]
 H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica D 8 (1983), 435444. MR 85a:58064
 [KY]
 J. L. Kaplan and J. A. Yorke, Chaotic behavior of multidimensional difference equations, in Functional Differential Equations and Approximations of Fixed Points, edited by H.O. Peitgen and H.O. Walter, Lecture Notes in Mathematics 730, Springer, Berlin, p.204. MR 80k:58074
 [P]
 Y. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, Journal of Statistical Physics 71 (1993), 529547. MR 94d:28008
 [PW]
 Y. Pesin and H. Weiss, On the dimension of a general class of deterministic and random Cantorlike sets in , symbolic dynamics, and the EckmannRuelle conjecture, to appear in Comm. Math. Physics.
 [PoW]
 M. Pollicott and H. Weiss, The dimensions of some selfaffine limit sets in the plane and hyperbolic sets, Journal of Statistical Physics 77 (1994), 841866. MR 95h:58083
 [R]
 A. Renyi, Probability Theory, NorthHolland, Amsterdam, 1970. MR 47:4296
 [Ru]
 D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976), 619654. MR 54:8732
 [S1]
 K. Simon, Hausdorff dimension for noninvertible maps, Ergod. Th. & Dynam. Sys. 13 (1993), 199212. MR 94c:58146
 [S2]
 Overlapping cylinders: the size of dynamically defined Cantorset, in Ergodic Theory of Z actions, London Math. Soc. Lecture Notes 228, Cambridge Univ. Press, 1996.
 [SY]
 T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions? to appear in Ergod. Th. & Dynam. Sys.
 [Y]
 L. S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys. 2 (1982), 109124. MR 84h:58087
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
28D20,
28D05,
60G18
Retrieve articles in all journals
with MSC (1991):
28D20,
28D05,
60G18
Additional Information
Wai Chin
Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523 (On leave at: Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota 55455)
Email:
chin@ima.umn.edu
Brian Hunt
Affiliation:
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
Email:
bhunt@ipst.umd.edu
James A. Yorke
Email:
yorke@ipst.umd.edu
DOI:
http://dx.doi.org/10.1090/S0002994797019004
PII:
S 00029947(97)019004
Received by editor(s):
June 30, 1995
Article copyright:
© Copyright 1997
American Mathematical Society
