Correlation dimension

for iterated function systems

Authors:
Wai Chin, Brian Hunt and James A. Yorke

Journal:
Trans. Amer. Math. Soc. **349** (1997), 1783-1796

MSC (1991):
Primary 28D20, 28D05; Secondary 60G18

MathSciNet review:
1407698

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The correlation dimension of an attractor is a fundamental dynamical invariant that can be computed from a time series. We show that the correlation dimension of the attractor of a class of iterated function systems in is typically uniquely determined by the contraction rates of the maps which make up the system. When the contraction rates are uniform in each direction, our results imply that for a corresponding class of deterministic systems the information dimension of the attractor is typically equal to its Lyapunov dimension, as conjected by Kaplan and Yorke.

**[AY]**J. C. Alexander and J. A. Yorke,*Fat baker’s transformations*, Ergodic Theory Dynam. Systems**4**(1984), no. 1, 1–23. MR**758890**, 10.1017/S0143385700002236**[BR]**Rufus Bowen and David Ruelle,*The ergodic theory of Axiom A flows*, Invent. Math.**29**(1975), no. 3, 181–202. MR**0380889****[DGOSY]**Ming Zhou Ding, Celso Grebogi, Edward Ott, Tim Sauer, and James A. Yorke,*Estimating correlation dimension from a chaotic time series: when does plateau onset occur?*, Phys. D**69**(1993), no. 3-4, 404–424. MR**1251269**, 10.1016/0167-2789(93)90103-8**[F1]**K. J. Falconer,*The Hausdorff dimension of self-affine fractals*, Math. Proc. Cambridge Philos. Soc.**103**(1988), no. 2, 339–350. MR**923687**, 10.1017/S0305004100064926**[F2]**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****[F3]**K. J. Falconer,*The dimension of self-affine fractals. II*, Math. Proc. Cambridge Philos. Soc.**111**(1992), no. 1, 169–179. MR**1131488**, 10.1017/S0305004100075253**[FOY]**J. Doyne Farmer, Edward Ott, and James A. Yorke,*The dimension of chaotic attractors*, Phys. D**7**(1983), no. 1-3, 153–180. MR**719051**, 10.1016/0167-2789(83)90125-2**[G]**Peter Grassberger,*Generalized dimensions of strange attractors*, Phys. Lett. A**97**(1983), no. 6, 227–230. MR**718442**, 10.1016/0375-9601(83)90753-3**[GH]**J. S. Geronimo and D. P. Hardin,*An exact formula for the measure dimensions associated with a class of piecewise linear maps*, Constr. Approx.**5**(1989), no. 1, 89–98. Fractal approximation. MR**982726**, 10.1007/BF01889600**[GP]**Peter Grassberger and Itamar Procaccia,*Measuring the strangeness of strange attractors*, Phys. D**9**(1983), no. 1-2, 189–208. MR**732572**, 10.1016/0167-2789(83)90298-1**[HP]**H. G. E. Hentschel and Itamar Procaccia,*The infinite number of generalized dimensions of fractals and strange attractors*, Phys. D**8**(1983), no. 3, 435–444. MR**719636**, 10.1016/0167-2789(83)90235-X**[KY]**James L. Kaplan and James A. Yorke,*Chaotic behavior of multidimensional difference equations*, Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978) Lecture Notes in Math., vol. 730, Springer, Berlin, 1979, pp. 204–227. MR**547989****[P]**Ya. B. Pesin,*On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions*, J. Statist. Phys.**71**(1993), no. 3-4, 529–547. MR**1219021**, 10.1007/BF01058436**[PW]**Y. Pesin and H. Weiss, On the dimension of a general class of deterministic and random Cantor-like sets in , symbolic dynamics, and the Eckmann-Ruelle conjecture, to appear in*Comm. Math. Physics.***[PoW]**Mark Pollicott and Howard Weiss,*The dimensions of some self-affine limit sets in the plane and hyperbolic sets*, J. Statist. Phys.**77**(1994), no. 3-4, 841–866. MR**1301464**, 10.1007/BF02179463**[R]**A. Rényi,*Probability theory*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Translated by László Vekerdi; North-Holland Series in Applied Mathematics and Mechanics, Vol. 10. MR**0315747****[Ru]**David Ruelle,*Zeta-functions for expanding maps and Anosov flows*, Invent. Math.**34**(1976), no. 3, 231–242. MR**0420720****[S1]**Károly Simon,*Hausdorff dimension for noninvertible maps*, Ergodic Theory Dynam. Systems**13**(1993), no. 1, 199–212. MR**1213088**, 10.1017/S014338570000729X**[S2]**Overlapping cylinders: the size of dynamically defined Cantor-set, in*Ergodic Theory of***Z***actions,*London Math. Soc. Lecture Notes**228**, Cambridge Univ. Press, 1996.**[SY]**T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions? to appear in*Ergod. Th.*&*Dynam. Sys.***[Y]**Lai Sang Young,*Dimension, entropy and Lyapunov exponents*, Ergodic Theory Dynamical Systems**2**(1982), no. 1, 109–124. MR**684248**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
28D20,
28D05,
60G18

Retrieve articles in all journals with MSC (1991): 28D20, 28D05, 60G18

Additional Information

**Wai Chin**

Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523 (On leave at: Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota 55455)

Email:
chin@ima.umn.edu

**Brian Hunt**

Affiliation:
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

Email:
bhunt@ipst.umd.edu

**James A. Yorke**

Email:
yorke@ipst.umd.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-97-01900-4

Received by editor(s):
June 30, 1995

Article copyright:
© Copyright 1997
American Mathematical Society