Kernel of locally nilpotent -derivations

of

Authors:
S. M. Bhatwadekar and Amartya K. Dutta

Journal:
Trans. Amer. Math. Soc. **349** (1997), 3303-3319

MSC (1991):
Primary 13B10; Secondary 13A30

DOI:
https://doi.org/10.1090/S0002-9947-97-01946-6

MathSciNet review:
1422595

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the kernel of a non-zero locally nilpotent -derivation of the polynomial ring over a noetherian integral domain containing a field of characteristic zero. We show that if is normal then the kernel has a graded -algebra structure isomorphic to the symbolic Rees algebra of an unmixed ideal of height one in , and, conversely, the symbolic Rees algebra of any unmixed height one ideal in can be embedded in as the kernel of a locally nilpotent -derivation of . We also give a necessary and sufficient criterion for the kernel to be a polynomial ring in general.

**[A-E-H]**S.S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring,*J. Algebra***23**(1972), 310-342. MR**46:5300****[A-K]**A. Altman and S. Kleiman,*Introduction to Grothendieck duality theory*, Lecture Notes in Mathematics, No.**146**, Springer-Verlag, 1970. MR**43:224****[B-C-W]**H. Bass, E.H. Connell and D.L. Wright, Locally polynomial algebras are symmetric algebras,*Invent. Math.***38**(1977), 279-299. MR**55:5613****[B-D]**S.M. Bhatwadekar and A.K. Dutta, On residual variables and stably polynomial algebras,*Comm. Algebra***21(2)**(1993), 635-645. MR**93k:13028****[B-H]**W. Bruns and J. Herzog,*Cohen-Macaulay Rings*, Cambridge University Press, 1993. MR**95h:13020****[C]**R.C. Cowsik, Symbolic powers and the number of defining equations,*Algebra and its Applications*, Lecture Notes in Pure and Applied Mathematics, No.**91**, Marcel Dekker, New York, 1984, 13-14. MR**85g:00023****[D-F]**D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of , Preprint.**[G]**J.M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras,*Arch. Math.***36**(1981), 305-312. MR**82h:13008****[N]**M. Nagata,*Local rings*, Interscience, 1962. MR**27:5790****[O]**N. Onoda, Subrings of finitely generated rings over a pseudogeometric ring,*Japan J. Math.***10(1)**(1984), 29-53. MR**88d:13024****[R]**D. Rees, On a problem of Zariski,*Illinois J. Math.***2**(1958), 145-149. MR**20:2341****[Rn]**R. Rentschler, Opérations du groupe additif sur le plan affine,*C.R. Aca. Sc. Paris Sér. A***267**(1968), 384-387. MR**38:1093****[R-S]**P. Russell and A. Sathaye, On finding and cancelling variables in ,*J. Algebra***57**(1979), 151-166. MR**80j:14030**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
13B10,
13A30

Retrieve articles in all journals with MSC (1991): 13B10, 13A30

Additional Information

**S. M. Bhatwadekar**

Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400 005, India

Email:
smb@tifrvax.tifr.res.in

**Amartya K. Dutta**

Affiliation:
Stat - Math Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta-700 035, India

Email:
amartya@isical.ernet.in

DOI:
https://doi.org/10.1090/S0002-9947-97-01946-6

Keywords:
Locally nilpotent derivations,
inert subrings,
symbolic Rees algebra

Received by editor(s):
January 11, 1996

Article copyright:
© Copyright 1997
American Mathematical Society