Absolute Borel sets and function spaces

Authors:
Witold Marciszewski and Jan Pelant

Journal:
Trans. Amer. Math. Soc. **349** (1997), 3585-3596

MSC (1991):
Primary 04A15, 54H05, 54C35

DOI:
https://doi.org/10.1090/S0002-9947-97-01852-7

MathSciNet review:
1401778

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An internal characterization of metric spaces which are absolute Borel sets of multiplicative classes is given. This characterization uses complete sequences of covers, a notion introduced by Frolík for characterizing Cech-complete spaces. We also show that the absolute Borel class of is determined by the uniform structure of the space of continuous functions ; however the case of absolute metric spaces is still open. More precisely, we prove that, for metrizable spaces and , if is a uniformly continuous surjection and is an absolute Borel set of multiplicative (resp., additive) class , , then is also an absolute Borel set of the same class. This result is new even if is a linear homeomorphism, and extends a result of Baars, de Groot, and Pelant which shows that the \v{C}ech-completeness of a metric space is determined by the linear structure of .

**[A1]**A. V. Arkhangel'skii,*Topological Function Spaces*, Kluwer Academic Publishers, Dordrecht, 1992. MR**92i:54022****[A2]**-,*On topological spaces which are complete in the sense of Cech*, Vest. Mosk. Univ. (1961), 37-40.MR**24:A1110****[BGP]**J. Baars, J. de Groot, J. Pelant,*Function spaces of completely metrizable spaces*, Trans. Amer. Math. Soc.**340**(1993), 871-879. MR**94f:54036****[Ba]**A. Barbati,*The hyperspace of an analytic metrizable space is analytic*, Proc. 11th Int. Conf. on Topology (Trieste 1993); Rend. Ist.Mat. Trieste**25**(1993), 15-21. MR**96c:54047****[Be]**G. Beer,*Topologies on closed and closed convex sets*, Kluwer Academic Publishers, Dordrecht, 1993. MR**95k:49001****[BP]**C. Bessaga and A. Pelczynski,*Selected Topics in Infinite-Dimensional Topology*, PWN, Warszawa, 1975. MR**57:17657****[Ch]**J.P.R. Christensen,*Topology and Borel Structure*, North-Holland Publishing Company, Amsterdam, London, 1974. MR**50:1221****[Co]**C. Costantini,*Every Wijsman topology relative to a Polish space is Polish*, Proc. Amer. Math. Soc**123**(1995), 2569-2574. MR**95j:54012****[CLP]**C. Costantini, S. Levi, J. Pelant,*On compactness in hyperspaces*, in preparation.**[DGM]**T. Dobrowolski, S. P. Gulko and J. Mogilski,*Function spaces homeomorphic to the countable product of*, Topology Appl.**34**(1990), 153-160. MR**91c:57024****[DM]**T. Dobrowolski and W. Marciszewski,*Classification of function spaces with the pointwise topology determined by a countable dense set*, Fund. Math.**148**(1995), 35-62. MR**96k:54017****[En]**R. Engelking,*General topology*, PWN, Warszawa, 1977. MR**58:18316b****[Fr]**D. H. Fremlin,*Families of compact sets and Tukey's ordering*, Atti Sem. Mat. Fis. Univ. Modena**39**(1991), 29-50. MR**92c:54032****[F1]**Z. Frolík,*Generalization of the -property of complete metric spaces*, Czech. Math. J.**10**(1960), 359-379. MR**22:7100****[F2]**-,*Topologically complete spaces*, Comment. Math. Univ. Carol.**1**(1960), 1-3.**[F3]**-,*A contribution to descriptive theory of sets and spaces*, General Topology and its Relations to Modern Analysis and Algebra, J. Novák, ed., Academia, Prague, 1962, pp. 157-173. MR**26:3002****[F4]**-,*A survey of separable descriptive theory of sets and spaces*, Czech. Math. J.**20**(1970), 406-467. MR**42:1660****[Gu1]**S. P. Gul'ko,*The space for countable infinite compact is uniformly homeomorphic to*, Bull. Pol. Acad. Sci.**36**(1988), 391-396. MR**92e:54011****[Gu2]**-,*O ravnomernykh gomeomorfizmakh prostranstv nepreryvnykh funktsii*, Baku International Topological Conference (1987), Trudy Mat. Inst. Steklova**193**(1990) (Russian); English transl. in Steklov Inst. Math. (1993), 87-93. MR**95f:54017****[Ha]**R. W. Hansell,*Descriptive topology*, Recent progress in general topology, M. Husek and J. van Mill, editors, North-Holland, Amsterdam, 1992, pp. 275-315. CMP**93:15****[Is]**J. R. Isbell,*Uniform spaces*, Math. Surv. 12, A.M.S., Providence, Rhode Island, 1964. MR**30:561****[JK]**H. J. K. Junnila and H. P. A. Künzi,*Characterizations of absolute -sets*, preprint.**[Ke]**A. S. Kechris,*Classical Descriptive Set Theory*, Springer-Verlag, New York, 1995. MR**96e:03057****[Kl]**V. L. Klee,*On the Borelian and projective types of linear subspaces*, Math. Scand.**6**(1958), 189-199. MR**21:3752****[Ku]**K. Kuratowski,*Topology*I, Academic Press and PWN, New York and London, 1966. MR**36:840****[O]**O. G. Okunev,*O slabotopologii soprazhennogo prostranstva i otnoshenii t-ekvivalentnosti*, Mat. Zametki**46**(1989), 53-59 (Russian); English transl.,*Weak topology of a dual space and a -equivalence relation*, Math. Notes**46**(1989), 534-536. MR**91h:46008****[SR]**J. Saint Raymond,*La structure borélienne d'Effros est-elle standard?*, Fund. Math.**100**(1978), 201-210. MR**80g:54044****[Si]**W. Sierpinski,*Sur une définition topologique des ensembles*, Fund. Math.**6**(1924), 24-29.**[Us]**V. V. Uspenskii,*A characterization of compactness in terms of uniform structure in a function space*, Uspekhi Matem. Nauk**37**(1982), 183-184. MR**83k:54025****[Va]**V. Valov,*Linear mappings between function spaces*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
04A15,
54H05,
54C35

Retrieve articles in all journals with MSC (1991): 04A15, 54H05, 54C35

Additional Information

**Witold Marciszewski**

Affiliation:
Vrije Universiteit, Faculty of Mathematics and Computer Science, De Boelelaan 1081 a, 1081 HV Amsterdam, The Netherlands

Address at time of publication:
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Email:
wmarcisz@cs.vu.nl

**Jan Pelant**

Affiliation:
Mathematical Institute of the Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic

Email:
pelant@mbox.cesnet.cz

DOI:
https://doi.org/10.1090/S0002-9947-97-01852-7

Keywords:
Absolute Borel set,
function space

Received by editor(s):
December 14, 1995

Additional Notes:
The first author was supported in part by KBN grant 2 P301 024 07.

The second author was supported in part by the grant GAČR 201/94/0069 and the grant of the Czech Acad. Sci. 119401.

Article copyright:
© Copyright 1997
American Mathematical Society