Weighted ergodic theorems

for mean ergodic -contractions

Authors:
Dogan Çömez, Michael Lin and James Olsen

Journal:
Trans. Amer. Math. Soc. **350** (1998), 101-117

MSC (1991):
Primary 47A35, 28D99

MathSciNet review:
1433114

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any bounded weight sequence which is good for all probability preserving transformations (a *universally good weight*) is also a good weight for any -contraction with mean ergodic (ME) modulus, and for any positive contraction of with . We extend the return times theorem by proving that if is a Dunford-Schwartz operator (not necessarily positive) on a Lebesgue space, then for any bounded measurable is a universally good weight for a.e. We prove that if a bounded sequence has "Fourier coefficents", then its weighted averages for any -contraction with mean ergodic modulus converge in -norm. In order to produce weights, good for weighted ergodic theorems for -contractions with quasi-ME modulus (i.e., so that the modulus has a positive fixed point supported on its conservative part), we show that the modulus of the tensor product of -contractions is the product of their moduli, and that the tensor product of positive quasi-ME -contractions is quasi-ME.

**[A1]**I. Assani,*The return times and the Wiener-Wintner property for mean-bounded positive operators in 𝐿^{𝑝}*, Ergodic Theory Dynam. Systems**12**(1992), no. 1, 1–12. MR**1162395**, 10.1017/S0143385700006544**[A2]**Idris Assani,*Universal weights from dynamical systems to mean-bounded positive operators on 𝐿^{𝑝}*, Almost everywhere convergence, II (Evanston, IL, 1989) Academic Press, Boston, MA, 1991, pp. 9–16. MR**1131779****[B]**Jean Bourgain,*Pointwise ergodic theorems for arithmetic sets*, Inst. Hautes Études Sci. Publ. Math.**69**(1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR**1019960****[BK]**A. Brunel and M. Keane,*Ergodic theorems for operator sequences*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**12**(1969), 231–240. MR**0268934****[BL]**A. Bellow and V. Losert,*The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences*, Trans. Amer. Math. Soc.**288**(1985), no. 1, 307–345. MR**773063**, 10.1090/S0002-9947-1985-0773063-8**[BO]**J. R. Baxter and J. H. Olsen,*Weighted and subsequential ergodic theorems*, Canad. J. Math.**35**(1983), no. 1, 145–166. MR**685822**, 10.4153/CJM-1983-010-7**[Be]**A. S. Besicovitch,*Almost periodic functions*, Dover Publications, Inc., New York, 1955. MR**0068029****[Bu]**R. B. Burckel,*Weakly almost periodic functions on semigroups*, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR**0263963****[CK]**R. V. Chacon and U. Krengel,*Linear modulus of linear operator*, Proc. Amer. Math. Soc.**15**(1964), 553–559. MR**0164244**, 10.1090/S0002-9939-1964-0164244-7**[C]**Doğan Çömez,*A generalization of Dunford-Schwartz theorem*, Doğa Mat.**15**(1991), no. 1, 29–34 (English, with Turkish summary). MR**1100818****[CL]**Doğan Çömez and Michael Lin,*Mean ergodicity of 𝐿₁ contractions and pointwise ergodic theorems*, Almost everywhere convergence, II (Evanston, IL, 1989) Academic Press, Boston, MA, 1991, pp. 113–126. MR**1131787****[E]**W. F. Eberlein,*Abstract ergodic theorems and weak almost periodic functions*, Trans. Amer. Math. Soc.**67**(1949), 217–240. MR**0036455**, 10.1090/S0002-9947-1949-0036455-9**[F]**Shaul R. Foguel,*The ergodic theory of Markov processes*, Van Nostrand Mathematical Studies, No. 21, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. MR**0261686****[H]**S. Horowitz,*Transition probabilities and contractions of 𝐿_{∞}*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**24**(1972), 263–274. MR**0331516****[I]**Yuji Ito,*Uniform integrability and the pointwise ergodic theorem*, Proc. Amer. Math. Soc.**16**(1965), 222–227. MR**0171895**, 10.1090/S0002-9939-1965-0171895-3**[JO1]**Roger L. Jones and James Olsen,*Subsequence pointwise ergodic theorems for operators in 𝐿^{𝑝}*, Israel J. Math.**77**(1992), no. 1-2, 33–54. MR**1194784**, 10.1007/BF02808009**[JO2]**Roger L. Jones and James Olsen,*Multiparameter weighted ergodic theorems*, Canad. J. Math.**46**(1994), no. 2, 343–356. MR**1271219**, 10.4153/CJM-1994-017-8**[K]**Choo-whan Kim,*A generalization of Ito’s theorem concerning the pointwise ergodic theorem*, Ann. Math. Statist.**39**(1968), 2145–2148. MR**0233955****[Kr]**Ulrich Krengel,*Ergodic theorems*, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR**797411****[LO]**M. Lin and J. Olsen,*Besicovitch functions and weighted ergodic theorems for LCA group actions*, Convergence in Ergodic Theory and Probability (V. Bergelson, P. March, J. Rosenblatt, eds.), de Gruyter, Berlin - New York, 1996, 277-289. CMP**97:02****[N]**Jacques Neveu,*Mathematical foundations of the calculus of probability*, Translated by Amiel Feinstein, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. MR**0198505****[O1]**James H. Olsen,*The individual weighted ergodic theorem for bounded Besicovitch sequences*, Canad. Math. Bull.**25**(1982), no. 4, 468–471. MR**674564**, 10.4153/CMB-1982-067-6**[O2]**James H. Olsen,*Calculation of the limit in the return times theorem for Dunford-Schwartz operators*, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), London Math. Soc. Lecture Note Ser., vol. 205, Cambridge Univ. Press, Cambridge, 1995, pp. 359–367. MR**1325711**, 10.1017/CBO9780511574818.016**[R]**Daniel J. Rudolph,*A joinings proof of Bourgain’s return time theorem*, Ergodic Theory Dynam. Systems**14**(1994), no. 1, 197–203. MR**1268717**, 10.1017/S014338570000780X**[Ro]**V. A. Rohlin,*On the fundamental ideas of measure theory*, Mat. Sbornik N.S.**25(67)**(1949), 107–150 (Russian). MR**0030584****[R-N]**C. Ryll-Nardzewski,*Topics in ergodic theory*, Probability—Winter School (Proc. Fourth Winter School, Karpacz, 1975), Springer, Berlin, 1975, pp. 131–156. Lecture Notes in Math., Vol. 472. MR**0390177****[T]**A. A. Tempel′man,*An ergodic theorem for amplitude modulated homogeneous random fields*, Litovsk. Mat. Sb.**14**(1974), no. 4, 221–229, 243 (Russian, with Lithuanian and English summaries). MR**0397853**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
47A35,
28D99

Retrieve articles in all journals with MSC (1991): 47A35, 28D99

Additional Information

**Dogan Çömez**

Affiliation:
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

**Michael Lin**

Affiliation:
Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel

**James Olsen**

Affiliation:
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

DOI:
http://dx.doi.org/10.1090/S0002-9947-98-01986-2

Received by editor(s):
October 9, 1995

Dedicated:
Dedicated to the Memory of Professor Robert Sine

Article copyright:
© Copyright 1998
American Mathematical Society