and operator norm estimates

for the complex time heat operator

on homogeneous trees

Author:
Alberto G. Setti

Journal:
Trans. Amer. Math. Soc. **350** (1998), 743-768

MSC (1991):
Primary 43A85, 35K05; Secondary 39A12

MathSciNet review:
1443889

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a homogeneous tree of degree greater than or equal to three. In this paper we study the complex time heat operator induced by the natural Laplace operator on . We prove comparable upper and lower bounds for the norms of its convolution kernel and derive precise estimates for the operator norms of for belonging to the half plane In particular, when is purely imaginary, our results yield a description of the mapping properties of the Schrödinger semigroup on .

**[CMS1]**M. G. Cowling, S. Meda and A. G. Setti, On spherical analysis on groups of isometries of homogeneous trees, (preprint).**[CMS2]**M. G. Cowling, S. Meda and A. G. Setti, Estimates for functions of the Laplace operator on homogeneous trees, (preprint).**[E]**A. Erdélyi,*Asymptotic expansions*, Dover Publications, Inc., New York, 1956. MR**0078494****[FTN]**Alessandro Figà-Talamanca and Claudio Nebbia,*Harmonic analysis and representation theory for groups acting on homogeneous trees*, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR**1152801****[FTP]**Alessandro Figà-Talamanca and Massimo A. Picardello,*Harmonic analysis on free groups*, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR**710827****[G]**S. Giulini, Estimates for the complex time heat operator on real hyperbolic spaces, (preprint).**[H]**Lars Hörmander,*Estimates for translation invariant operators in 𝐿^{𝑝} spaces*, Acta Math.**104**(1960), 93–140. MR**0121655****[L]**N. N. Lebedev,*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075****[N]**Claudio Nebbia,*Groups of isometries of a tree and the Kunze-Stein phenomenon*, Pacific J. Math.**133**(1988), no. 1, 141–149. MR**936361****[O]**F. W. J. Olver,*Asymptotics and special functions*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR**0435697****[P]**Tadeusz Pytlik,*Radial convolutors on free groups*, Studia Math.**78**(1984), no. 2, 179–183. MR**766714****[W]**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746**

G. N. Watson,*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
43A85,
35K05,
39A12

Retrieve articles in all journals with MSC (1991): 43A85, 35K05, 39A12

Additional Information

**Alberto G. Setti**

Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italia

Email:
setti@dsdipa.mat.unimi.it

DOI:
https://doi.org/10.1090/S0002-9947-98-02042-X

Keywords:
Homogeneous trees,
complex time heat operator,
spherical Fourier analysis

Received by editor(s):
June 10, 1996

Additional Notes:
Work partially supported by the Italian M.U.R.S.T

Article copyright:
© Copyright 1998
American Mathematical Society