Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The possible orders of solutions
of linear differential equations
with polynomial coefficients


Authors: Gary G. Gundersen, Enid M. Steinbart and Shupei Wang
Journal: Trans. Amer. Math. Soc. 350 (1998), 1225-1247
MSC (1991): Primary 34A20; Secondary 30D35
DOI: https://doi.org/10.1090/S0002-9947-98-02080-7
MathSciNet review: 1451603
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find specific information about the possible orders of transcendental solutions of equations of the form $f^{(n)}+p_{n-1}(z)f^{(n-1)}+\cdots +p_{0}(z)f=0$, where $p_0(z), p_1(z),\dots, p_{n-1}(z)$ are polynomials with $p_0(z) \not\equiv 0$. Several examples are given.


References [Enhancements On Off] (What's this?)

  • 1. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), 88-104. MR 88m:30076
  • 2. W. Helmrath and J. Nikolaus, Ein elementarer Beweis bei der Anwendung der Zentralindexmethode auf Differentialgleichungen, Complex Variables 3 (1984), 387-396. MR 86a:30045
  • 3. G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel-Boston-Stuttgart, 1985. MR 87h:30066
  • 4. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-New York, 1993. MR 94d:34008
  • 5. K. Pöschl, Über Anwachsen und Nullstellenverteilung der ganzen transzendenten Lösungen linearer Differentialgleichungen, I, J. Reine Angew. Math. 199 (1958), 121-138. MR 20:6561
  • 6. G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
  • 7. A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Betrage bei gegebenem Argumente der Funktion, Acta Math. 41 (1916), 1-28.
  • 8. H. Wittich, Über das Anwachsen der Lösungen linearer Differentialgleichungen, Math. Ann. 124 (1952), 277-288. MR 14:171d
  • 9. H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1968. MR 39:5804

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34A20, 30D35

Retrieve articles in all journals with MSC (1991): 34A20, 30D35


Additional Information

Gary G. Gundersen
Affiliation: Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70148
Email: ggunders@math.uno.edu

Enid M. Steinbart
Affiliation: Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70148
Email: esteinba@math.uno.edu

Shupei Wang
Affiliation: Department of Mathematics, University of New Orleans, New Orleans, Louisiana 70148
Email: swang@math.uno.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02080-7
Received by editor(s): October 11, 1995
Received by editor(s) in revised form: July 6, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society