On the equivariant Morse complex of

the free loop space of a surface

Author:
Nancy Hingston

Journal:
Trans. Amer. Math. Soc. **350** (1998), 1129-1141

MSC (1991):
Primary 58E10; Secondary 57R91, 53C22

DOI:
https://doi.org/10.1090/S0002-9947-98-02097-2

MathSciNet review:
1458305

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove two theorems about the equivariant topology of the free loop space of a surface. The first deals with the nondegenerate case and says that the ``ordinary'' Morse complex can be given an -action in such a way that it carries the -homotopy type of the free loop space. The second says that, in terms of topology, the iterates of an isolated degenerate closed geodesic ``look like'' the continuous limit of the iterates of a finite, fixed number of nondegenerate closed geodesics.

**1.**R. Bott,*On the iteration of closed geodesics and the Sturm intersection theory*, Comm. Pure Appl. Math.**9**(1956), 171-206. MR**19:859f****2.**M. Greenberg,*Lectures on Aglebraic Topology*, Benjamin, Reading MA, 1967. MR**35:6137****3.**D. Gromoll and W. Meyer,*Periodic geodesics on compact Riemannian manifolds*, J. Diff. Geom.**3**(1969), 493-510. MR**41:9143****4.**N. Hingston,*An equivariant model for the free loop space of*, American J. of Math.**114**(1991), 139-155. MR**93b:55011****5.**N. Hingston,*Curve shortening, equivariant Morse theory and closed geodesics on the -sphere,*, A.M.S. Proceedings of Symposia in Pure Mathematics, vol. 54, Amer. Math. Soc., Providence, 1993, pp. 423-429. MR**94a:00012****6.**N. Hingston,*On the growth of the number of closed geodesics on the two-sphere*,**IMRN****9**(No. 4) (1993), 253-262. MR**94m:58044****7.**J. D. Jones,*Cyclic homology and equivariant homology*, Inventiones Math.**87**(1987), 403-424. MR**88f:18016****8.**W. Klingenberg,*Lectures on Closed Geodesics*, Springer-Verlag, Berlin, 1978. MR**57:17563****9.**W. Klingenberg,*Riemannian Geometry*, de Gruyter, Berlin, 1982. MR**84j:53001****10.**G. Lodder,*Dihedral homology and the free loop space*, Proc. London Math. Soc.**3 60**(1) (1990), 201-224. MR**91a:55007****11.**M. Morse,*The Calculus of Variations in the Large*, Amer. Math. Soc. Colloq. Publ., vol. 18, Amer. Math. Soc., Providence, 1934.**12.**H. B. Rademacher,*On the equivariant Morse chain complex on the space of closed curves.*, Math. Z.**201**(1989), 279-302. MR**90i:58027**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58E10,
57R91,
53C22

Retrieve articles in all journals with MSC (1991): 58E10, 57R91, 53C22

Additional Information

**Nancy Hingston**

Affiliation:
Department of Mathematics, The College of New Jersey, P. O. Box 7718, Ewing, New Jersey 08628-0718

Email:
hingston@tcnj.edu

DOI:
https://doi.org/10.1090/S0002-9947-98-02097-2

Received by editor(s):
May 4, 1996

Article copyright:
© Copyright 1998
American Mathematical Society